• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Novel genetic signature that can predict some kinds of breast cancer is identified

Bioengineer by Bioengineer
December 17, 2019
in Health
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The research, published in the journal PLOS Genetics, combined a study of the genes involved in retinopathy, as a model of angiogenesis, with analysis of transcriptomic gene expression profiles from public breast cancer databases.

IMAGE

Credit: Ricardo Giordano


Researchers have identified a genetic signature with prognostic value for certain kinds of breast cancer. The discovery also contributes to a better understanding of the molecular mechanisms of pathological angiogenesis, the aberrant proliferation of blood vessels that occurs during cancer and other diseases.

The research, published in the journal PLOS Genetics, combined a study of the genes involved in retinopathy, as a model of angiogenesis, with analysis of transcriptomic gene expression profiles from public breast cancer databases.

Conducted by researchers at the University of São Paulo’s Chemistry Institute (IQ-USP), in collaboration with the Ontario Institute for Cancer Research (OICR) in Toronto, Canada, the study was supported São Paulo Research Foundation – FAPESP.

“We identified a set of genes whose expression in breast cancer correlates with the degree of pathological angiogenesis in the tumor, so that it serves as a genetic signature of angiogenesis that is prognostic and more robust than the signatures identified previously, given the correlation found between angiogenesis and tumors generally,” said Ricardo Giordano, a professor at IQ-USP, head of its Vascular Biology Laboratory and a co-author of the study.

In the study the Brazilian researchers identified 153 altered genes in both healthy and diseased retinas in mice. From this list they identified 149 equivalent human genes. The result served as the basis for a genetic signature study in partnership with the Canadian team, using a database with information on breast cancer patients. The conclusion was that 11 key genes involved in pathological angiogenesis performed best in terms of prognostic value.

Pathological angiogenesis is common to breast cancer and retinopathy. “The fact that these two diseases share this process and that angiogenesis is fundamental to the development of cancer in general led us to try to build a bridge between retinopathy and breast cancer,” said João Carlos Setubal, head of USP’s Bioinformatics Laboratory and also a co-author of the article.

According to the researchers, the study focused on breast cancer because of the large amount of data available on the disease. “We had to have access to a vast quantity of public data, given the considerable variation between one patient and another. This is the case for breast cancer. Genetic profiles are available for some 2,000 patients,” Setubal said.

Bioinformatics was crucial to finding the genetic signature, he added. The data generated in the laboratory was submitted to sophisticated computational processing in partnership with researchers at OICR in Canada. Another co-author of the study, Rodrigo Guarischi de Sousa, then a PhD student, wrote the program that tested the 149 human genes as possible components of the signature for breast cancer. In this part of the study he was supported by a scholarship from FAPESP for a research internship abroad supervised by Paul C. Boutros at OICR.

Boutros is currently a researcher in the Human Genetics Department at the University of California, Los Angeles (UCLA). Guarischi de Sousa now works at DASA, Brazil’s largest medical diagnostics company.

The researchers plan to find applications for this signature, especially in treatment for breast cancer. “Our next goal is to continue studying angiogenesis in cancer,” Giordano said. “We’re interested in identifying genes on this list that can be targets for the development of new drugs or new applications of existing drugs.”

From retinopathy to breast cancer

The discovery of the prognostic gene signature for breast cancer is the result of a long study supported by a research scholarship from the National Council for Scientific and Technological Development (CNPq) starting in 2010, when Giordano began studying the transcriptome (RNA expression) and proteome (protein expression) of pathological retinal angiogenesis.

“As a result of this study, our lab implemented a mouse model to research retinopathy. The murine model is important as it’s difficult to study blood vessel formation outside living tissue. This model enables us to induce retinopathy by modulating oxygen levels and study angiogenesis in the lab,” Giordano said.

The researchers took blood samples from mice to investigate the differences between physiological angiogenesis, which occurs in healthy individuals (in wound healing, ovulation and placental growth, for example) and pathological angiogenesis, which is part of disease (e.g. cancer or arthritis).

“We observed which genes were expressed by endothelial cells [the inner lining of blood vessels] in both kinds of angiogenesis, always looking for the genes that were more expressed in one kind than the other,” Giordano said.

A key element of the experiment was oxygen variation in the chambers containing newborn mouse pups. In chambers with oxygen at 75%, the mice became retinopathic, whereas in ambient air (oxygen at 20%) the retina developed normally.

The relationship between oxygen and cells has been in the news lately. William Kaelin, Peter Ratcliffe and Gregg Semenza won the 2019 Nobel Prize in Physiology or Medicine for discovering how cells sense and adapt to changing oxygen availability.

Gene expression-based prognostic signature

It is important to stress that clinical applications of the genetic signature for angiogenesis may differ from applications deriving from the marker gene BRCA1. The BRCA1 gene mutation became world-famous in 2013 when US actor Angelina Jolie underwent a preventive double mastectomy after genetic testing showed that she carried the mutation and hence ran an 87% risk of developing breast cancer.

“BRCA1 is a genomic gene,” Setubal said. “A woman with mutations in this gene faces a higher risk of developing breast cancer but won’t necessarily do so. The presence of mutations in this gene serves to help predict the appearance of the disease. The signature we describe in our study proved promising to predict the development of breast cancer after it actually appears.”

###

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Media Contact
Joao Carlos Silva
[email protected]
55-113-838-4381

Original Source

http://agencia.fapesp.br/ /32218/

Related Journal Article

http://dx.doi.org/10.1371/journal.pgen.1008482

Tags: BiochemistryBiologyBreast CancercancerGenesMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Genkwanin Glycosides Boost Glucose Uptake in Fat

Genkwanin Glycosides Boost Glucose Uptake in Fat

August 16, 2025
Biosilica Nanoparticles Combat Liver Ischemia Injury

Biosilica Nanoparticles Combat Liver Ischemia Injury

August 16, 2025

Treg Therapy Boosts Pro-Inflammatory Th17 via IL-2

August 16, 2025

Intratracheal Budesonide Boosts Preterm Infant Lung Health

August 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seismic Analysis of Masonry Facades via Imaging

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

Genkwanin Glycosides Boost Glucose Uptake in Fat

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.