• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Novel genetic method improves efficiency of enzyme

Bioengineer by Bioengineer
June 26, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the University of Georgia developed a new genetic engineering technique to dramatically improve an enzyme's ability to break down biomass.

The new method, Evolution by Amplification and Synthetic Biology (EASy), enabled scientists to accelerate the evolution of a microorganism's desirable traits. This technique led to the unusual fusion of enzymes from two different species of bacteria and contributed to the emerging use of microbes to convert lignin, a major component of plant biomass, into valuable chemicals.

The EASy method enables the back-to-back incorporation of hundreds of copies of a gene–which contains the code for a specific enzyme–into a cell. This region of repetitive DNA provides the cell with a means to undergo accelerated evolution of this gene. This can ultimately lead to the generation of superior performing enzymes.

"We can make many, many random changes and identify those that are of interest using evolution," said Christopher Johnson, a molecular biologist in NREL's National Bioenergy Center and co-author of the new paper, "Accelerating pathway evolution by increasing the gene dosage of chromosomal segments."

Published in the journal Proceedings of the National Academy of Sciences of the United States of America, the paper was co-authored by NREL's Graham Dominick, Emily Fulk, Paval Khanna, Jeffrey Linger, and Gregg Beckham, and the University of Georgia's Melissa Tumen-Velasquez, Alaa Ahmed, Sarah Lee, Alicia Schmidt, Mark Eiteman, and Ellen Neidle.

Researchers inserted DNA that encodes the enzyme GcoA from the bacteria Amycolatopsis into another bacteria, Acinetobacter baylyi ADP1, placing it adjacent to the gene that encodes the CatA enzyme. The EASy technique resulted in the unusual fusion of two genes into a single gene encoding a chimeric enzyme.

The trait afforded by this chimeric enzyme was the ability to more efficiently convert a component of lignin–a particularly resilient part of plant biomass–into fuels, and a precursor of plastics such as nylon lignin comprises about 30 percent of biomass.

"It's a matter of conversion efficiency," said Linger. "If you're not using that 30 percent, you're throwing it away. We're trying to capture that 30 percent."

###

Funding for the research came from DOE's Bioenergy Technologies Office.

NREL is DOE's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by The Alliance for Sustainable Energy, LLC.

Media Contact

David Glickson
[email protected]
303-275-4097
@nrel

http://www.nrel.gov

https://www.nrel.gov/news/press/2018/novel-genetic-method-improves-efficiency-of-enzyme.html

Share12Tweet8Share2ShareShareShare2

Related Posts

Comparing Four Exome Capture Platforms on DNBSEQ

Comparing Four Exome Capture Platforms on DNBSEQ

October 25, 2025
EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

October 25, 2025

Avocado Seed Meal Boosts Quail Growth and Meat Quality

October 25, 2025

Peanut Terpene Synthase Analysis Uncovers Biosynthesis Interactions

October 25, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1281 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    192 shares
    Share 77 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Glymphatic Flow Dysfunction Linked to Parkinson’s Disease

Night Shift Impact on Nurses’ Heart Rate Variability

Assessing Quality of Life After Neoadjuvant Therapy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.