• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Novel genes identified that help suppress prostate and other cancers

Bioengineer by Bioengineer
March 20, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New genes which help prevent prostate, skin and breast cancer development in mice have been discovered by researchers at the Wellcome Trust Sanger Institute and their collaborators. The study identified genes that cooperate with the well-known tumour suppressor gene PTEN, and showed their relevance in human prostate tumours.

Reported today in Nature Genetics, this research sheds light on new pathways involved in cancer development – these could be possible drug targets for cancers with a faulty PTEN gene. The methods developed could also identify other genes that cooperate to suppress cancer growth.

Prostate cancer is the second most common cancer in men in the UK with around 47,000 men diagnosed each year. More than half of prostate cancers have an altered or missing PTEN gene, as do many other cancers, including brain tumours, and endometrial cancers.

Tumour suppressor genes such as PTEN help prevent cancer development in healthy people. PTEN regulates an important cell pathway for growth and division. However, little is known about which other genes and pathways cooperate with PTEN to prevent cancer.

In this study, researchers designed a new method in mice in which part of the Pten gene was converted into a mobile DNA element known as a transposon. When this was mobilized from the Pten gene it was inactivated. Importantly the transposon carrying a piece of Pten would land randomly throughout the genome, damaging genes into which it inserted. Cancers would grow when the transposon damaged a tumour suppressor gene that co-operated with Pten.

Dr Jorge de la Rosa, the first author on the study from the Wellcome Trust Sanger Institute, said: "We developed a new method that coupled Pten inactivation with mobilization of the transposon. We inserted the transposon directly inside the Pten gene, so that whenever it jumped out and inserted into another part of the genome, it inactivated Pten at the same time. By analysing which genes were disrupted in the cancers that grew, we were able to pinpoint genes that cooperate with Pten in suppressing tumours."

The researchers analysed 278 prostate, breast and skin tumors from the mice and revealed hundreds of genes that could cooperate with PTEN and act as further tumor suppressor genes. Human cell lines and data from human prostate tumours were then used to study the five most promising genes.

Dr Juan Cadiñanos, joint lead author from the Instituto de Medicina Oncologica y Molecular de Asturias, in Spain, said: "This is the first study to look specifically for tumour suppressor genes that cooperate with PTEN in a range of cancer types. We found that genetically inactivating PTEN and each of the five candidate genes in human cell lines did drive cancerous changes in the cells. We also discovered that human prostate cancer samples had lower levels of expression from the five genes than usual, indicating that these pathways may be important for suppressing tumours."

The researchers also studied one of the five genes, called Wac, in transgenic mice with mutant Pten. They discovered that removing one copy of Wac increased the size of prostate tumours, as expected for a tumor suppressor. However, removing both copies in the genome surprisingly reduced the size of the tumours. This could reveal new pathways to target for treating prostate cancer.

Prof Allan Bradley, joint lead author from the Sanger Institute, said: "Drugs that target PTEN related pathways are under development, but tumours quickly develop resistance. It would therefore be useful to also target other tumour suppressor pathways. This new method is a good way of highlighting important tumour suppressor networks, and we hope the genes identified in this study will provide a basis for the development of therapeutic strategies for prostate and other cancers."

###

Notes to Editors:

Instituto de Medicina Oncologica y Molecular de Asturias

The Instituto de Medicina Oncologica y Molecular de Asturias (IMOMA) (Oviedo, Spain) is a centre focused on the molecular diagnostics, translational research and therapy of cancer and other genetic diseases. http://www.imoma.es

The Wellcome Trust Sanger Institute

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. http://www.sanger.ac.uk

Wellcome

Wellcome exists to improve health for everyone by helping great ideas to thrive. We're a global charitable foundation, both politically and financially independent. We support scientists and researchers, take on big problems, fuel imaginations and spark debate. http://www.wellcome.ac.uk

Media Contact

Samantha Wynne
[email protected]
44-122-349-2368
@sangerinstitute

http://www.sanger.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

High-Fat Diet Hinders Memory Formation by Suppressing Autophagy

September 17, 2025

Keck Hospital of USC Recognized as Vizient Top Performer for Third Consecutive Year

September 17, 2025

Exploring Long COVID’s Impact on Menstruation Cycle

September 17, 2025

Metabolic Differences Reveal Diets in Asian Ethnicities

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Fat Diet Hinders Memory Formation by Suppressing Autophagy

Keck Hospital of USC Recognized as Vizient Top Performer for Third Consecutive Year

Exploring Long COVID’s Impact on Menstruation Cycle

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.