• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Novel effector biology research provides insights into devastating citrus greening disease

Bioengineer by Bioengineer
January 21, 2021
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kelley J. Clark, Zhiqian Pang, Jessica Trinh, Nian Wang, and Wenbo Ma

Citrus greening disease, also known as Huanglongbing (HLB), is devastating to the citrus industry, causing unprecedented amounts of damage worldwide. There is no known cure. Since the disease’s introduction to the United States in the early 2000s, research efforts have increased exponentially. However, there is still a lack of information about the molecular mechanism behind the disease.

“Getting into the molecular details behind what contributes to citrus greening symptom development and disease progression is key to finding sustainable solutions to combat the pathogen,” explained plant pathologist Wenbo Ma. “We bring the community one step closer to understanding these mechanisms with our research.”

Ma and her colleagues at the University of California and the University of Florida used molecular plant pathology approaches to dissect the mechanisms of the ongoing tug-of-war between the citrus host and the bacterial pathogen that causes citrus greening disease.

“To understand how the bacterial pathogen causes citrus greening disease, we studied the function of effectors produced by the pathogen that can directly affect citrus,” Ma explained. “We demonstrated that one of the effectors promotes bacterial colonization and disease development in citrus. Our studies indicate that this likely occurs by the pathogen’s manipulation of host senescence (process of aging). “

Host senescence has been shown to be manipulated by other pathogens, but this is the first indication that it plays a role in citrus greening disease progression. They hope this knowledge will help agricultural systems enhance resistance to this disease and stimulate research on the molecular plant pathology aspect of citrus greening disease.

###

For more information about this study, read “Sec-Delivered Effector 1 (SDE1) of ‘Candidatus Liberibacter asiaticus’ Promotes Citrus Huanglongbing” published in the December issue of MPMI.

Media Contact
Ashley Bergman Carlin
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/MPMI-05-20-0123-R

Tags: Agricultural Production/EconomicsAgricultureBacteriologyBiologyEcology/EnvironmentFood/Food ScienceMicrobiologyMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Training the Immune System to Accept Transplants: A Breakthrough That Could Revolutionize Organ Donation

August 15, 2025
KIER Innovates Advanced Electrodes for Efficient Hydrogen Production from Seawater Electrolysis

KIER Innovates Advanced Electrodes for Efficient Hydrogen Production from Seawater Electrolysis

August 15, 2025

How Key Corn-Producing Regions in China Are Achieving Sustainable Yield Increases

August 15, 2025

NRG Oncology Launches “ARCHER” Trial (NRG-GU015) Exploring Shortened Radiation Therapy for Muscle-Invasive Bladder Cancer

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Training the Immune System to Accept Transplants: A Breakthrough That Could Revolutionize Organ Donation

KIER Innovates Advanced Electrodes for Efficient Hydrogen Production from Seawater Electrolysis

How Key Corn-Producing Regions in China Are Achieving Sustainable Yield Increases

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.