• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Novel coronaviruses are riskiest for spillover

Bioengineer by Bioengineer
August 25, 2022
in Science News
Reading Time: 3 mins read
0
Illustration of virus-host modeling network
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the past decade, scientists have described hundreds of novel viruses with the potential to pass between wildlife and humans. But how can they know which are riskiest for spillover and therefore which to prioritize for further surveillance in people?

Illustration of virus-host modeling network

Credit: UC Davis

In the past decade, scientists have described hundreds of novel viruses with the potential to pass between wildlife and humans. But how can they know which are riskiest for spillover and therefore which to prioritize for further surveillance in people?

Scientists from the University of California, Davis created network-based models to prioritize novel and known viruses for their risk of zoonotic transmission, which is when infectious diseases pass between animals and humans.

Their study, published in the journal Communications Biology, provides further evidence that coronaviruses are riskiest for spillover and should continue to be prioritized for enhanced surveillance and research.

The machine learning models were designed by the EpiCenter for Disease Dynamics at the UC Davis One Health Institute in the School of Veterinary Medicine.

Prioritizing novel viruses

The models found that novel viruses from the coronavirus family are expected to have a larger number of species as hosts. This is consistent with known viruses, indicating this family of viruses should be most highly prioritized for surveillance.

The scientists created a prioritization score for each virus to serve as a metric for the risk of zoonotic transmission.

“As surveillance expands, we hope to be inundated with data associated with viruses,” said lead author and veterinary epidemiologist Pranav Pandit, a researcher with the UC Davis One Health Institute. “These tools will help us understand the risk from novel viruses, which can help prepare for future pandemics.”

Environmental change and viral connections

The model uses a data-driven, virus-host network to quantify the likelihood of humans as hosts for more than 500 viruses newly discovered between 2009 and 2019. This stemmed from wildlife surveillance research conducted in Africa, Asia and Latin America by a consortium of investigators.

Host-pathogen networks provide insight into the ecology of viruses and their hosts, which is critical to understanding the risk such viruses pose to human health. This is especially important amid a changing climate and environment. As the landscape changes and species shift and move in response, the risk of viral transmission across species can increase.

“This study shows how different wildlife species are connected by the viruses they share,” said corresponding author Christine Johnson, a UC Davis professor of epidemiology and ecosystem health and director of the EpiCenter for Disease Dynamics. “Environmental change is a massive driver for moving species around. How viruses interact with different hosts in a changing environment is critical to understanding the risk they pose to human health.”

High priorities

In additional to coronaviruses, the model also ranked several paramyxoviruses as high priorities for future work. Diseases associated with this family of viruses include measles, mumps and respiratory tract infections.

“Characterizing hundreds of viruses takes a lot of time and requires prioritization,” Pandit said. “Our network-based approach helps identify the early signals in the ecological and evolutionary trajectories of these viruses. It can also help illuminate missing links between viruses and their hosts.”

The study was supported with funding from the Unites States Agency for International Development and the National Institutes of Health.

 



Journal

Communications Biology

DOI

10.1038/s42003-022-03797-9

Method of Research

Computational simulation/modeling

Article Title

Predicting the potential for zoonotic transmission and host associations for novel viruses

Article Publication Date

19-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Harnessing Microbes to Extract Iron: Transforming Polluted Soils into Self-Cleaning Bio-Reactors

Harnessing Microbes to Extract Iron: Transforming Polluted Soils into Self-Cleaning Bio-Reactors

October 24, 2025

MiRNA Therapies: New Hope Against Heart, Brain Infarctions

October 24, 2025

Microelectrode Arrays Enable Neural Drive Separation in Reinnervated Muscles

October 24, 2025

Unveiling Ssp4’s Role in Foodborne Spore DNA Defense

October 24, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1280 shares
    Share 511 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    188 shares
    Share 75 Tweet 47
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Harnessing Microbes to Extract Iron: Transforming Polluted Soils into Self-Cleaning Bio-Reactors

MiRNA Therapies: New Hope Against Heart, Brain Infarctions

Microelectrode Arrays Enable Neural Drive Separation in Reinnervated Muscles

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.