• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

North American birds not fully adjusting to changing climate

Bioengineer by Bioengineer
July 14, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Climate change poses a number of challenges to plants and animals. For example, as the climate changes, appropriate climatic conditions for many species are changing, and some may disappear altogether. This can become even more severe as the climate is changing together with other human-caused changes, such as land use for agriculture or other uses. When there is increasing divergence between the climatic conditions suitable for a particular species and its abundance and distribution through time, this is known as climate decoupling. For example, the grasshopper sparrow (Ammodramus savannarum) lives in grasslands across North America and was once quite common in these habitats. However, because grasslands continue to be degraded or lost, this has hindered this grassland specialist species from fully adjusting to changing climatic conditions. Climate decoupling, together with habitat loss, may explain the observed high rates of grasshopper sparrow abundance declines and local extinctions.

Climate decoupling

Credit: Adobe Stock

Climate change poses a number of challenges to plants and animals. For example, as the climate changes, appropriate climatic conditions for many species are changing, and some may disappear altogether. This can become even more severe as the climate is changing together with other human-caused changes, such as land use for agriculture or other uses. When there is increasing divergence between the climatic conditions suitable for a particular species and its abundance and distribution through time, this is known as climate decoupling. For example, the grasshopper sparrow (Ammodramus savannarum) lives in grasslands across North America and was once quite common in these habitats. However, because grasslands continue to be degraded or lost, this has hindered this grassland specialist species from fully adjusting to changing climatic conditions. Climate decoupling, together with habitat loss, may explain the observed high rates of grasshopper sparrow abundance declines and local extinctions.

It is not only the grasshopper sparrow that is decoupling from its optimal climate conditions. A team of researchers led by iDiv, Leipzig University and MLU used the best available evidence on bird population changes through time from the North American Breeding Bird Survey (BBS) and found that at least 30 out of 114 species (26%) of North American birds have become less well adjusted to their climate over the last 30 years. This means that their distributions and abundances were increasingly decoupled from climate over time. For each species, the reasons may be different. Some species might be inclined to remain in areas where they historically lived. Some species might be limited by climate-independent resources and habitats. And some species might be declining due to global changes, and thus unable to adjust to changing climate. Approximately 10% of the species studied had positive temporal trends in climate matching – they became more coupled to climate through time. For the remaining species, there was less support for significant temporal trends in climate matching – i.e., the adjustment of their abundances and distributions to climate remained more stable through time. 

“One of the most surprising results of our analysis was that the overall trend of climate decoupling showed no signs of slowing down,” says lead author Dr Duarte Viana, who did most of this study while working at iDiv and Leipzig University and is now based at the Doñana Biological Station in Seville. “This suggests a possible feedback between climate decoupling and declining populations that might emerge in the face of a multitude of current global changes,” he adds.

The researchers were able to show that climate decoupling was more prevalent among habitat specialists than among generalists. These specialists may have greater difficulty finding the right combinations of suitable habitat and climate conditions in increasingly modified landscapes.

“We also found that climate decoupling was more prominent among species that were considered threatened and that were declining in population sizes,” says senior author Prof Dr Jonathan Chase, head of the Biodiversity Synthesis research group at iDiv and MLU. “There are many known factors that are contributing to the population declines of many species of birds, but our study adds a new facet to our understanding of the potential causes of some of these changes – that species are less likely to be living in their optimal climate conditions as the world changes around them. This, like the proverbial canary in the coal mine, might be something we humans should pay attention to as we will likely soon find ourselves similarly living in places outside of our optimal climate ranges.”



Journal

Nature Ecology & Evolution

DOI

10.1038/s41559-022-01814-y

Method of Research

Data/statistical analysis

Subject of Research

Animals

Article Title

Increasing climatic decoupling of bird abundances and distributions.

Article Publication Date

14-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Link Between Halquinol and Antibiotic Resistance Explored

Link Between Halquinol and Antibiotic Resistance Explored

August 22, 2025
Perilla frutescens acuta Stops Allergy by Blocking Key Pathways

Perilla frutescens acuta Stops Allergy by Blocking Key Pathways

August 22, 2025

Tracking the Language of Molecules

August 22, 2025

Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

August 22, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Link Between Halquinol and Antibiotic Resistance Explored

Perilla frutescens acuta Stops Allergy by Blocking Key Pathways

Vaginal Estrogen Tablets Show Safety Potential for Postmenopausal Stroke Survivors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.