• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Noninvasive detection for early stage cancers from circulating DNA

Bioengineer by Bioengineer
August 16, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new DNA sequencing-based method could help noninvasively detect early stage cancers by analyzing fragments of genetic material circulating in the blood that originate from tumors. The findings may pave the way to more useful screening and management tools for patients with cancer. More than 14 million people globally are diagnosed with cancer every year, and most cases aren't detected until the disease has progressed to late stages with few treatment options. As such, early detection and clinical interventions for colorectal, ovarian, lung, and breast cancers might save as many as one million lives annually. Jillian Phallen and colleagues developed an ultrasensitive approach to identify molecular signatures of cancer from small pieces of genetic material released by cancer cells into the bloodstream called circulating tumor DNA (ctDNA). Plasma from 194 patients with colorectal, ovarian, lung, and breast cancers frequently contained ctDNA with mutations in one or more of 58 so-called cancer driver genes, unlike samples from 44 healthy individuals. Because ctDNA comprises a tiny fraction of the total DNA present in the blood (called cell-free DNA, or cfDNA), the scientists developed a new sample-preparation and computational analysis pipeline, which they dubbed TEC-Seq. By sequencing every molecule tens of thousands of times, the researchers picked out ctDNA and distinguished between cancer-associated alterations and normal variation in cfDNA with a false positive rate of fewer than one per three million DNA base pairs. On average, cancer patients had over four times more cfDNA in their blood overall as compared to healthy subjects, and increased levels correlated with more aggressive disease. The authors say analyzing a broader panel of driver genes may further boost the sensitivity and specificity of TEC-Seq.

###

Media Contact

Science Press Package
[email protected]
202-326-6440
@AAAS

http://www.aaas.org

http://dx.doi.org/10.1126/scitranslmed.aan2415

Share14Tweet7Share2ShareShareShare1

Related Posts

Hexaploid Oat: Pangenome and Pantranscriptome Unveiled

October 30, 2025
Impact of Fluorine Content on Dianionic Ionic Liquids

Impact of Fluorine Content on Dianionic Ionic Liquids

October 30, 2025

Plant Flavonoids Disrupt Pseudomonas Aeruginosa Biofilms

October 30, 2025

Controlling NMDA Receptors: Conductance and Neurosteroids

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1290 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hexaploid Oat: Pangenome and Pantranscriptome Unveiled

Impact of Fluorine Content on Dianionic Ionic Liquids

Plant Flavonoids Disrupt Pseudomonas Aeruginosa Biofilms

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.