• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Non-invasive prostate cancer diagnosing, monitoring

Bioengineer by Bioengineer
March 22, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Washington State University

Technology being developed at Washington State University provides a non-invasive approach for diagnosing prostate cancer and tracking the disease's progression.

The innovative filter-like device isolates prostate cancer indicators from other cellular information in blood and urine. It could enable doctors to determine how cancer patients are responding to different treatments without needing to perform invasive biopsies.

Guidance for effective treatment

The WSU research team fitted a mat of tiny glass springs with specially designed biomarkers that attract the fatty droplets of proteins and RNA that tumor cells shed into body fluids. The droplets, called exosomes, contain genetic information that can be analyzed to determine a cancer's molecular composition, even how far it has advanced.

"It may be possible to predict which drugs would be most effective in treating a patient's cancer," said WSU chemistry professor Clifford Berkman, who led the design of the biomarkers. "More broadly, this technology could be expanded to other types of cancers and diseases."

Writing in Springer's Journal of Materials Science, Berkman, Parissa Ziaei, a Ph.D. student in the interdisciplinary materials science and engineering program, and Grant Norton, professor of mechanical and materials engineering, said their capture technique is more efficient than previous approaches at isolating prostate tumor exosomes from other bits and pieces of cellular information.

The researchers are working on designs for a version of their filter-like device for use in a clinical setting.

A non-invasive alternative to biopsy

Prostate cancer can be a serious disease, but most men diagnosed with prostate cancer do not die from it. In fact, more than 2.9 million men in the United States who have been diagnosed with prostate cancer at some point are still alive today, according to the American Cancer Society.

The fact that prostate cancer can remain in a human for years before spreading to other organs makes monitoring its progression and response to treatment an important, long-term process.

A biopsy, a procedure in which small samples of the prostate are removed with a needle, is sometimes performed on a patient if blood tests reveal abnormalities that indicate the presence of prostate cancer. Biopsies are also performed to track the progression of the disease and how it is responding to treatment. The biopsy is generally safe but sometimes leads to bleeding or infection.

The WSU exosome capture technique could provide a reliable and non-invasive alternative to biopsy.

"Say you have a urine sample from a patient known to have prostate cancer. You could pass the urine through the device we are in the process of putting together and measure the number of exosomes that are specifically from prostate cancer cells," Norton said. "The physician would propose a treatment plan and the amount of exosomes in a follow-up urine sample would indicate how effective the treatment was."

Possibilities for detecting other cancers

In addition to helping doctors monitor the progression of prostate cancer, the WSU researchers hope their new approach can be applied to help treat patients with other forms of cancer and disease. The filter-like mat of glass nanosprings synthesized in Norton's lab could feasibly be fitted with a wide array of biomarkers to attract cancer exosomes in urine, blood and other bodily fluids.

"It wouldn't be a big step to imagine applying what we are doing now to breast cancer or pancreatic cancer," Norton said. "It opens up all kinds of exciting possibilities."

The research supports WSU's Grand Challenges – initiatives aimed at particularly pressing societal concerns. It is particularly relevant to the challenge of sustaining health and changing the course of disease.

###

Media Contact

Grant Norton
[email protected]
509-335-6617
@WSUNews

Washington State University

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Continuous Glucose Monitoring: Revolutionizing Type 2 Diabetes Care

December 19, 2025
BBX Gene Family Boosts Anthocyanin in Eggplant

BBX Gene Family Boosts Anthocyanin in Eggplant

December 19, 2025

Radiotherapy Plus Anti-PD-1 Boosts Liver Cancer Ferroptosis

December 19, 2025

Peptidyl-tRNA Hydrolase 2 Suppresses Peripartum Heart Failure

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Continuous Glucose Monitoring: Revolutionizing Type 2 Diabetes Care

BBX Gene Family Boosts Anthocyanin in Eggplant

Radiotherapy Plus Anti-PD-1 Boosts Liver Cancer Ferroptosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.