• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Non-coding DNA changes sex determination

Bioengineer by Bioengineer
June 14, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have identified a key enhancer of Sox9 — a gene critical for male sex development — and demonstrated that deleting that non-coding DNA results in male-to-female sex reversal in mice.

The study, published in Science, deepens understanding of the normal process of sex determination in mammals. The findings could also have important implications for patients with differences in sex development (DSDs), in which reproductive organs don't develop as expected.

The Science study was a collaboration between the laboratories of the late Danielle Maatouk, PhD, assistant professor of Obstetrics and Gynecology at Northwestern University Feinberg School of Medicine and corresponding author Robin Lovell-Badge, PhD, of the Francis Crick Institute in London.

Maatouk's research focused on sex determination, the process during which embryos develop either testes or ovaries. Her laboratory was specifically focused on exploring how non-coding elements — parts of DNA that don't encode for proteins — regulate gene expression and impact this process.

The Sox9 gene is crucial for male differentiation and the proper formation of testes; if Sox9 is mutated or incorrectly expressed, an individual who is chromosomally male (XY) can develop ovaries instead of testes.

Previously, it was known that some patients with DSDs have changes in their genome near the Sox9 gene that alter its expression and lead to sex reversal. But it was unclear exactly why.

In the current study, the scientists identified an enhancer (a short region of DNA that can increase gene transcription) that is necessary to regulate expression of the Sox9 gene. When the scientists deleted the enhancer in mouse models, they discovered that Sox9 expression was decreased enough to cause complete sex reversal; mouse embryos that were chromosomally male (XY) developed as phenotypically normal females, with ovaries that were indistinguishable from those of XX females.

Alexandra Garcia-Moreno and Isabella Salamone, both fifth-year doctoral students in Feinberg's Driskill Graduate Program in Life Sciences and Christopher Futtner, a research associate, were also co-authors.

This is the first time scientists have identified an enhancer of Sox9 that, when lost, causes sex reversal, according to Salamone.

The findings could help improve the genetic diagnosis of patients with DSDs in the future; currently, only about 20 percent of such patients receive a genetic diagnosis.

"We believe that many undiagnosed patients have mutations in regulatory regions — such as the one that we identified near Sox9 — and regulatory regions are usually not investigated by genetic testing," said Salamone, who is now completing her degree in the laboratory of Elizabeth McNally, MD, PhD, director of the Center for Genetic Medicine. "Often genes important for sex determination are also crucial for other developmental processes, and a mutation in one gene or its regulatory region can impact a patient's health in many ways. As we begin to understand the genetic underpinnings of these disorders, we can improve our care of these patients."

Going forward, the team is investigating other enhancers involved in the regulation of Sox9 and other sex-determining genes, and hopes to also understand how Sox9 expression is repressed in females, leading to the development of ovaries.

"The data sets we've produced can be used as a road map to regulatory regions of other genes important for gonad development," Futtner said.

###

Media Contact

Marla Paul
[email protected]
312-503-8928
@northwesternu

http://www.northwestern.edu

http://news.feinberg.northwestern.edu/2018/06/understanding-the-epigenetics-of-sex-determination/

Related Journal Article

http://dx.doi.org/10.1126/science.aas9408

Share12Tweet7Share2ShareShareShare1

Related Posts

American College of Chest Physicians Pioneers Initiative to Expand Access to Lifesaving Noninvasive Ventilation for COPD Patients

September 17, 2025

Impact of Soccer Headers on Brain Health: Study Reveals Structural Changes in Brain Folds

September 17, 2025

Cholesterol Depletion Enhances Molecule Permeability in Brain Endothelium

September 17, 2025

Selective Presynaptic Inhibition Controls Fly Leg Proprioception

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling mTORC1 Activation on Lysosome Membranes

American College of Chest Physicians Pioneers Initiative to Expand Access to Lifesaving Noninvasive Ventilation for COPD Patients

Groundbreaking Innovations in Sodium-Based Battery Design

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.