• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

No strings attached for underwater video system

Bioengineer by Bioengineer
September 14, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © 2017 KAUST

A flexible and cost-effective technology for streaming high-quality underwater video images has been developed by researchers at KAUST by improving the bandwidth to achieve better video quality.

Oceans cover more than two-thirds of our planet and are a major source of biodiversity, food and medicines as well as containing vast reserves of oil, gas and marine aggregates for use in many industrial processes.

Wireless technologies that are capable of producing real-time video have the potential to open the oceans to further exploration and monitoring. They will be particularly useful for the inspection and maintenance of underwater pipelines and cables and of offshore oil and gas fields, where waters are too shallow for remotely operated vehicles and where the use of divers is often impractical and costly.

Existing technologies like acoustic communications and low-frequency radio waves are limited by narrow bandwidths and the need for large antennae and high-transmission powers, making them unsuitable for streaming good-quality, real-time video.

PhD student Abdullah Al-Halafi, with his supervisor Basem Shihada and colleagues, explored underwater wireless optical communication (UWOC) systems, which consume significantly less power and offer the higher bandwidths required for streaming live video.

"We first built the real-time video transmission system and then integrated it into an UWOC setup," explains Al-Halafi. "Although the design and development of the system were very challenging, its ability to be programed enabled us to reconfigure the system into several different arrangements."

To improve the accuracy of the detected signal, the researchers first used a technique called quadrature amplitude modulation to increase the representation of information carried by the signal for a given bandwidth. They then compared it with phase-shift keying, which changes the phase of the carrier signal, while optimizing the transmission for each configuration.

To check how well the system performed, the team developed an innovative algorithm to measure errors that occur during transmission called the bit error rate. Also, by passing the signal through a five-meter trough containing water of differing turbidity, they were able to test the quality of the video under different types of ocean water.

"Our system produced the highest-quality video streaming so far achieved in UWOC systems and provides a reconfigurable and cost-effective communications system for underwater live video streaming," says Al-Halafi. "It could lead to advances in underwater research and the discovery of new resources."

###

Media Contact

Carolyn Unck
[email protected]

http://kaust.edu.sa/

Original Source

https://discovery.kaust.edu.sa/en/article/409/no-strings-attached-for-underwater-video-system http://dx.doi.org/10.1364/JOCN.9.000826

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Exploring Amanita Mitochondrial Genomes and Phylogeny

October 2, 2025
Tracking Raccoon Domestication Through Citizen Science Images

Tracking Raccoon Domestication Through Citizen Science Images

October 2, 2025

New Study Identifies Surprising Marker in Kidney Disease

October 2, 2025

New Insights into Human Cilia Shed Light on Childhood Diseases

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    79 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring RNA-Protein Interactions: A Pathway to Innovative Cancer and Brain Disease Therapies

Clinical Trial Explores Internal Radiation Therapy for Kidney Cancer Treatment

Embracing Uncertainty: A New Approach for Engineers in Designing Complex Systems

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.