• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

No glacial fertilization effect in the Antarctic Ocean

Bioengineer by Bioengineer
April 19, 2022
in Chemistry
Reading Time: 4 mins read
0
Drillship
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Changes in the concentration of atmospheric carbon dioxide (CO2) are considered to be the main cause of past and future climate change. A long-standing debate centers on whether the roughly 30 percent lower CO2 content of the ice-age atmosphere was caused by iron fertilization. It is argued that iron-rich dust is carried into the ocean by wind and water, where it stimulates the growth of algae that absorb more CO2. As the algae die and then sink permanently into the depths of the ocean, the CO2 also remains there like in a trap. Although there is clear evidence that dust input increased during the ice ages, the fertilization effect is controversial, at least for the Antarctic Ocean.

Drillship

Credit: IODP

Changes in the concentration of atmospheric carbon dioxide (CO2) are considered to be the main cause of past and future climate change. A long-standing debate centers on whether the roughly 30 percent lower CO2 content of the ice-age atmosphere was caused by iron fertilization. It is argued that iron-rich dust is carried into the ocean by wind and water, where it stimulates the growth of algae that absorb more CO2. As the algae die and then sink permanently into the depths of the ocean, the CO2 also remains there like in a trap. Although there is clear evidence that dust input increased during the ice ages, the fertilization effect is controversial, at least for the Antarctic Ocean.

In a recent study, an international team of 38 researchers from 13 countries led by Dr. Michael Weber from the Institute for Geosciences at the University of Bonn investigated this question. As part of the Integrated Ocean Discovery Program (IODP), the team traveled to the Scotia Sea on the drillship “JOIDES Resolution” and spent two months in 2019 bringing up cores from the seafloor at depths of 3,000 to 4,000 meters. Weber: “We collected the highest-resolution and longest climate archive ever obtained near Antarctica and its main dust source, Patagonia.”

1.5 million years of climate history

In the 200-meter-long deep-sea core U1537, the climate history of the last 1.5 million years was recorded in detail. This allows the reconstruction of the dust input to be nearly doubled, since Antarctic ice cores only cover the last 800,000 years. Current records from the deep ocean show that dust deposition during the ice ages was actually five to 15 times higher. This is also reflected in the ice cores.

However, the researchers found no evidence of a fertilization effect from dust in the Antarctic Ocean during the ice ages. Rather, the production of algae, for example, and thus carbon CO2 sequestration, was high only during warm periods when dust input into the Scotia Sea was low. This means that during cold periods, other processes prevented the CO2 captured in the ocean from escaping into the atmosphere and triggering warming. The main factors here are much more extensive sea ice cover, more intense stratification in the ocean, and reduced dynamics of the current systems, which contributed to a reduction in the CO2 content of the atmosphere during cold periods.

The opposing trends in dust deposition and oceanic productivity during the ice ages and interglacial periods of the Pleistocene are accompanied by long-term, gradual changes in the climate system in the southern polar region. Bioproductivity was particularly high during the interglacial periods of the last 400,000 years, but during the mid-Pleistocene transition 1.2 million to 700,000 years ago, it differed little from that during cold periods. As the transition progressed, the dust input covered larger and larger areas in the Southern Hemisphere. Abrupt changes continued to occur 900,000 years ago, indicating greater glaciation of Antarctica.

“There is indeed evidence of a fertilization effect during the ice ages in cores outside the Antarctic zone,” Weber concludes. “However, our study shows that atmospheric CO2 fluctuations do not depend solely on iron fertilization from dust deposition. In the Antarctic Ocean, it is rather a complex interplay of a westerly wind system, productivity, and feedback with sea ice. This relationship has been consistent over the last 1.5 million years.”

Publication: Weber, M.E., Bailey, I., Reilly, Hemming, S., Martos, Y.M., Reilly, B.T., Ronge, T., Brachfeld, S., Williams, T., Raymo, M.E., Belt, S.T., Smik, L., Vogel, H., Peck, V., Armbrecht, L., Cage, A., Cardillo, F.G., Du, Z., Fauth, G., Fogwill, C.J., Garcia, M., Garnsworthy, M., Glueder, A., Guitard, M., Gutjahr, M., Hernandez-Almeida, I., Hoem, F., Hwang, J.-H., Iizuka, M., Kato, Y., Lee, B.,O’Connell, S., Pérez, L.F., Seki, O., Stevens, L., Tauxe, L., Tripathi, S., Warnock, J., and Zheng, X.: Antiphased dust deposition and productivity in the Antarctic Zone over the past 1.5 Ma. Nature Communications, DOI: https://doi.org/10.1038/s41467-022-29642-5.



Journal

Nature Communications

DOI

10.1038/s41467-022-29642-5

Article Title

Antiphased dust deposition and productivity in the Antarctic Zone over the past 1.5 Ma

Article Publication Date

19-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025
Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1285 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sarcopenia: The Future of Muscle Ultrasound?

Serum Phosphate Levels Link to Hospital Stay in Neonatal Sepsis

Exploring Cathepsin Z’s Role in Prostate Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.