• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

No deliveries: How cells decide when to accept extracellular packages

Bioengineer by Bioengineer
November 13, 2019
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Edward Partlow and Dr. Richard Baker

Endocytosis, a fundamental process that cells use to take in macromolecules, functions a lot like an airlock on a spaceship – but squishier, says Dr. Gunther Hollopeter, assistant professor of molecular medicine at the Cornell University College of Veterinary Medicine. Researchers have studied how cells initiate and perform endocytosis since the 1960s, but in a new paper in the journal eLIFE, Hollopeter’s lab finally describes how cells shut down this important cellular machinery. And their findings are not without controversy.

“Until our work, people had not appreciated that it’s important to turn this process off,” said Hollopeter. Endocytosis functions in neurodegenerative diseases like Alzheimer’s, viral infections, cancer and cardiovascular disease. “That’s why it’s important for us to understand how this machinery is working. If we could figure out how to turn it up or down, and tune it in different organ systems, maybe we could control some of these disease progressions.”

Endocytosis is crucial for everyday functioning of all types of cells. “The type of endocytosis we study is a multipurpose tool the cells use – it’s very adaptable,” said Edward Partlow, a graduate student in the Hollopeter lab. For example, the process helps determine how cells respond to signals that tell them when to grow and proliferate, enables neurons to modulate reactions to neurotransmitters and allows liver cells to remove cholesterol from the bloodstream.

The system is so universally important in multicellular organisms that fungi, plants and animals all share virtually the same molecular machines to carry out endocytosis. Because of this uniformity, Hollopeter’s group works with the model organism C. elegans – a microscopic worm that is easy to manipulate – to figure out how the process works. They create different mutations that disrupt endocytosis, which causes distinctive fluid-filled cheeks that look like jowls. By figuring out how to fix the worms’ jowls and restore endocytosis, they can piece together which proteins are required for the system and what role they play. Then the researchers verify that the same rules apply in other animals using proteins isolated from humans and mice.

During endocytosis, cells form what looks like a “furry pit” under the macromolecules, engulf them and pinch off the payload within a membrane compartment inside the cell. The “fur” is actually a coat of scaffolding proteins called clathrin. Since clathrin can’t attach to the cell membrane directly, an adaptor protein complex called AP2 first changes into an open, active state and then links the scaffolding to the membrane to start the process.

Previously, Hollopeter’s group discovered that the protein FCHo acts like an accelerator on the process to open AP2 and that another protein, NECAP, acts as the brake and closes it. In their latest work, the team partnered with Dr. Richard Baker, a microscopist at the University of California, San Diego, to create a 3D visualization showing how NECAP interacts with AP2 using cryo-electron microscopy. This Nobel Prize-winning technology involves flash-freezing the proteins and using a high-energy electron beam to create an incredibly high-resolution image. The resulting visualizations show that NECAP works just like a chip clip on a bag of potato chips. It attaches on either side of the AP protein complex to clamp it shut and prevent endocytosis.

The researchers don’t know yet whether NECAP’s role is to help recycle the clathrin or if it turns off endocytosis as a form of quality control. “We think of it as acting either at the end of endocytosis,” said Partlow, “or at the beginning to turn it off, if the process starts at the wrong place or at the wrong time.”

The new findings directly contradict the work of other endocytosis researchers who also recently published a paper on NECAP’s function. They conclude that NECAP works as an accelerator instead of a brake. But Hollopeter and Partlow think that there are still components of endocytosis that the research community has yet to piece together.

In their current work, the group is investigating a new type of jowly worm, to figure out why disrupting endocytosis creates those chubby cheeks. Recently, Hollopeter and Baker received a five-year, $1.83 million grant from the National Institutes of Health to support their work to identify and visualize factors involved in endocytosis.

“Many people would say this has already been worked out and we know everything we need to know about it. But the more we look at endocytosis, the more we recognize that there’s still a lot we don’t know,” said Hollopeter. “We can use our system to get at fundamental questions of how this protein complex is regulated and that’s really an exciting opportunity.”

###

Media Contact
Melissa Osgood
[email protected]
607-255-9451

Original Source

https://www.vet.cornell.edu/news/20191107/no-deliveries-how-cells-decide-when-accept-extracellular-packages

Related Journal Article

http://dx.doi.org/10.7554/eLife.50003

Tags: BiologyCell Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025
3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025

The Fascinating Origins of Our Numerals

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

‘Molecular Glue’ Activates Immune System to Combat Neuroblastoma

New Study Reveals Lower Melanoma Rates Among Individuals with Multiple Tattoos

A Motor-Sparing Local Anesthetic: Is It Within Reach?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.