• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

No cap removal, no fertilization

Bioengineer by Bioengineer
January 25, 2023
in Biology
Reading Time: 3 mins read
0
Fig. 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Osaka, Japan – Fertilization is the union of two cells: an egg and a sperm. Before the egg and the sperm fuse, an event known as the “acrosome reaction” needs to occur in the sperm. Now, a team from Osaka University has identified a protein called FER1L5 that is essential for sperm to undergo the acrosome reaction.

Fig. 1

Credit: 2023, Masahito Ikawa, 2023 Morohoshi et al., Science Advances

Osaka, Japan – Fertilization is the union of two cells: an egg and a sperm. Before the egg and the sperm fuse, an event known as the “acrosome reaction” needs to occur in the sperm. Now, a team from Osaka University has identified a protein called FER1L5 that is essential for sperm to undergo the acrosome reaction.

There is a cap-like vesicle structure called the acrosome over the front of the head of a sperm. As the sperm migrates in the female reproductive tract in mammals, the acrosome reaction occurs, which involves the release of molecules in the acrosome to facilitate fertilization. Although the acrosome reaction is essential for sperm to fertilize eggs, the molecular mechanism that regulates the acrosome reaction remains unclear.

The research team examined FER-1, a ferlin family protein essential for fertilization in the nematode (i.e., roundworm) called C. elegans. Unlike mammalian sperm, such as those of humans and mice, C. elegans sperm move like amoebae. FER-1 has been found to be important for membranous organelle fusion and the initiation of amoeboid movement. In mice, six ferlin family proteins are similar to FER-1: DYSF, OTOF, MYOF, FER1L4, FER1L5, and FER1L6. While DYSF is known to be involved in muscular dystrophy and OTOF in deafness, clarification is needed on whether proteins similar to FER-1 are involved in mammalian sperm function.

“When we generated mice that were lacking one particular member of the ferlin family, FER1L5, the sperm of the male mice were unable to fertilize eggs,” explains first author Akane Morohoshi. However, the fertility of female mice lacking FER1L5 was unchanged. The team then went on to show that sperm lacking FER1L5 were unable to undergo the acrosome reaction. “Even though we added a strong inducer, no acrosome reaction took place in sperm lacking FER1L5, suggesting that FER1L5 is critical for the acrosome reaction,” explains senior author Haruhiko Miyata.

“Our results indicate that the function of ferlin proteins is well conserved from nematodes to mice, although their sperm look different,” explains senior author Masahito Ikawa. While this study was carried out on mice, FER1L5 protein is known to be present in human sperm. Further research resulting from this study may therefore lead to new treatments and diagnostic methods for male infertility in humans.

###

The article, “Testis-enriched ferlin, FER1L5, is required for Ca2+-activated acrosome reaction and male fertility”, will be published in Science Advances at DOI: https://doi.org/10.1126/sciadv.ade7607



Journal

Science Advances

DOI

10.1126/sciadv.ade7607

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Testis-enriched ferlin, FER1L5, is required for Ca2+-activated acrosome reaction and male fertility

Article Publication Date

25-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unlocking Pacific Oyster Germ Cell Development Mysteries

October 24, 2025
blank

New Study Validates Effectiveness of DEI Programs: Research-Backed Defense Published Today

October 23, 2025

Adrenergic Receptors: Evolution in Pacific Oysters Uncovered

October 23, 2025

New Study Reveals Origins of Urban Human-Biting Mosquito and Explains Rise in West Nile Virus Transmission from Birds to Humans

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1278 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    180 shares
    Share 72 Tweet 45
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Silencing SOX2OT Lowers Lung Cancer Cell Aggressiveness

Intellectual Disability and Behavioral Issues in Fragile X

Factors Influencing Nurse Adverse Event Reporting in China

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.