• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

NIST unveils forensic technique to measure mechanical properties of evidence

Bioengineer by Bioengineer
November 2, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Delrio/NIST

You may have seen it on CSI: The star examines hair from a crime scene and concludes its color or texture looks like the defendant's hair, or maybe his dog's. Case closed.

But looks can be deceiving, as well as vague and subjective. In real life, the FBI is now reviewing thousands of cases involving hair comparisons going back to the 1980s because traditional identifications–often based on looks alone–have been called into question.

Instead, what if investigators could precisely measure a hair's mechanical properties–its stiffness and stickiness? In fact, they can, according to recent experiments at the National Institute of Standards and Technology (NIST), which is developing science-based methods to help ensure rigorous forensic practices.

"Lots of forensics is based on the how the evidence looks," NIST engineer Frank DelRio says. "We are trying to add another dimension, how things feel. How an object feels–its mechanical response–depends on the material and the object's history."

DelRio is an expert in atomic force microscopy (AFM), a precision tool with a mechanical probe typically used in basic sciences for imaging but also to measure responses to force, or pulling. He usually measures industrial materials like silicon. But he also watches a lot of CSI and thought his expertise could help answer national calls to enhance the accuracy, reliability and statistical rigor of forensics.

DelRio and NIST physicist Robert Cook recently used AFM to demonstrate quantitative methods for measuring–nondestructively and at the nanometer size scale–the mechanical properties of four types of evidence: hair, documents, fingerprints and explosives.

The researchers measured the stiffness and pull-off force (stickiness) for hair as a function of treatment, specifically conditioning and bleaching. They also measured these properties for test documents made to mimic forgeries marked with both ballpoint ink and printer ink, impression and pattern evidence such as how fingerprints change over time, and interactions of explosive particles and surfaces as a function of fabric type, rayon versus cotton.

The measurement results clearly distinguished various treatments of hair, types of ink, age of fingerprints and composition of fabrics, and related these data to the structure of the sample such as broken bonds in the hair and the smooth ballpoint ink versus the rough printer ink. Importantly, the measurements were rigorous–that is, precise enough to allow for tests and quantitative specifications of the statistical significance of the similarities or differences in properties. DelRio imagines that someday AFM might be used, for example, to measure old hair evidence and determine the probability that a criminal used a certain shampoo.

"This is all theoretical at this point," DelRio notes. "For this to be an effective practical tool, a lot of baseline measurements and in-depth studies would need to be done to develop a good sense of how these properties change over time."

In addition, DelRio notes that AFM calibration methods and standard samples or other methods for specifying accuracy would need to be developed to enable accurate comparison of measurements across laboratories. Also crucial would be the development of an experience base to build trust in AFM techniques, requiring widespread availability of instruments, training, protocols and standards for forensics labs, the paper notes.

###

Paper: F.W. DelRio and R.F. Cook. Quantitative Scanning Probe Microscopy for Nanomechanical Forensics. 2016. Experimental Mechanics. Posted online Oct. 31, 2016. DOI: 10.1007/s11340-016-0238-y

Media Contact

Laura Ost
[email protected]
@usnistgov

http://www.nist.gov

Share12Tweet8Share2ShareShareShare2

Related Posts

Think Deeply Before Adopting AI Messaging Tools

September 3, 2025
High-Strength Al-Zr-Er-Ni Alloys with Superior Ductility

High-Strength Al-Zr-Er-Ni Alloys with Superior Ductility

September 3, 2025

Nurse-Led Video Support Boosts Meal Care in Dementia

September 3, 2025

Long-Range Quantum Entanglement in Mu-Near-Zero Metamaterials

September 3, 2025
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Think Deeply Before Adopting AI Messaging Tools

High-Strength Al-Zr-Er-Ni Alloys with Superior Ductility

Nurse-Led Video Support Boosts Meal Care in Dementia

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.