• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

NIST study identifies chemical blends as possible alternative refrigerants

Bioengineer by Bioengineer
May 29, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jimmie Pike/US Air Force

More than a dozen chemical blends could serve as alternative refrigerants that won’t heat the atmosphere as much as today’s refrigerants do, or catch fire, according to a new computational study by the National Institute of Standards and Technology (NIST).

The NIST study identified the 22 “best” nonflammable or marginally flammable blends with lower global warming potential (GWP)–a measure of how much heat a gas will trap if released into the atmosphere–than the current standard refrigerant for vehicle air conditioning (AC), called R-134a (tetrafluoroethane).

Most of the identified blends combine R-134a with one or two other commercial refrigerants.

The new NIST analysis, which was conducted for the U.S. military but also applies to civilian applications such as AC systems for homes and cars, is a follow-up to a 2017 NIST study that found that all single-component, climate-friendly refrigerants were at least marginally flammable. That study suggested blends might offer the optimal solutions.

“The military is insistent about wanting non-flammable blends, but the civilian applications are moving more and more toward at least marginally flammable mixtures,” NIST mechanical engineer and study lead author Ian Bell said.

To help reduce global warming, nearly 200 nations, including the United States, agreed in 2016 to amend the Montreal Protocol to phase down by mid-century the refrigerants used in most AC systems. The partial phasedown, rather than a complete phaseout, recognized the complicated choices that will need to be made to select replacements.

For the new study, NIST researchers selected 13 fluids within a range of pressure, flammability, and GWP values that might produce a blend with the desired characteristics. All fluids were low in toxicity and commercially available. The researchers conducted an extensive evaluation of all possible combinations of two or three of the 13 fluids.

The fluids included hydrofluoroolefins, which have very low GWP but are mildly flammable; nonflammable hydrofluorocarbons (HFCs) with moderate-to-high GWP; mildly flammable HFCs; and carbon dioxide, which is nonflammable and also has a very low GWP of 1, but would raise the operating pressure of a blend, which is undesirable.

NIST researchers did not find any blends that met all desired constraints–nonflammability, low GWP, high efficiency (cooling per unit of work), and overall cooling capacity similar to that of the R-134a baseline system.

The study identified 14 nonflammable blends that offered a reduction in GWP of, at most, 51 percent compared to R-134a’s GWP of 1300. An additional eight blends that were marginally flammable were identified with GWP reductions of as much as 99 percent. Researchers simulated the performance of these 22 blends in a detailed refrigeration cycle model. The study was performed using computational tools; researchers plan to carry out laboratory experiments to verify the results.

The study revealed several trends. The most promising nonflammable blends have slightly lower efficiency compared to R-134a. These nonflammable blends have a lower GWP limit of 640; this is due to the need for a lot of R-134a in the mixture to suppress the flammability of low-GWP fluids. Other blends containing a significant amount of carbon dioxide were also nonflammable, but these had very low efficiencies compared to R-134a and were not considered viable alternatives.

There is also a general trend of efficiency increasing in tandem with GWP and flammability. This is because lower-GWP fluids tend to be more complex molecules and this complexity can hinder refrigeration performance.

“The ‘good’ blends that we found are very borderline nonflammable,” Bell cautioned. “That doesn’t mean that they won’t still burn given the right environment. We need to be cautious, because this is sort of a dark art. There is a fundamental trade-off: If you really want nonflammability and efficiency, you won’t get both. You will get one or the other.”

###

The work was supported by the U.S. Department of Defense.

Study: I. Bell, P. Domanski, M.O. McLinden, G.T. Linteris. The hunt for nonflammable refrigerant blends to replace R-134a. International Journal of Refrigeration. Published May 29, 2019. DOI: : 10.1016/j.ijrefrig.2019.05.035

Media Contact
Laura Ost
[email protected]

Tags: Atmospheric ScienceBiomedical/Environmental/Chemical EngineeringCalculations/Problem-SolvingChemistry/Physics/Materials SciencesClimate ScienceMathematics/StatisticsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Wildlife Tracking Animations Reveal Insights into Animal Movement Patterns

October 7, 2025
Unveiling Sindhi Genetics: A 19X-STR Study

Unveiling Sindhi Genetics: A 19X-STR Study

October 7, 2025

Frontiers Forum Deep Dive: AI and Omics Drive Personalized Drug and RNA Therapy Innovations for Heart Disease

October 7, 2025

Wiley Integrates Support for Nanalysis NMR Instruments in KnowItAll 2026

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    815 shares
    Share 326 Tweet 204
  • New Study Reveals the Science Behind Exercise and Weight Loss

    98 shares
    Share 39 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    76 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

University of Oklahoma Scientist Secures Funding to Connect Molecular Insights with Tissue Architecture

Unwavering Commitment and Passion Lead to Nobel Prize Triumph

Wildlife Tracking Animations Reveal Insights into Animal Movement Patterns

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.