• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

NIH Director’s Award to develop framework to pinpoint disease-causing genetic mutations

Bioengineer by Bioengineer
October 6, 2021
in Biology
Reading Time: 3 mins read
0
NIH Director’s Award to Develop Framework to Pinpoint Disease-Causing Genetic Mutations
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Gerald Quon, an assistant professor in the Department of Molecular and Cellular Biology, College of Biological Sciences at the University of California, Davis has received a Director’s New Innovator Award from the National Institutes of Health (NIH). The award will support the development of a computational framework for characterizing how genetic variants associated with risk of psychiatric diseases like schizophrenia and bipolar disorder work at the cellular level.

NIH Director’s Award to Develop Framework to Pinpoint Disease-Causing Genetic Mutations

Credit: UC Davis College of Biological Sciences

Gerald Quon, an assistant professor in the Department of Molecular and Cellular Biology, College of Biological Sciences at the University of California, Davis has received a Director’s New Innovator Award from the National Institutes of Health (NIH). The award will support the development of a computational framework for characterizing how genetic variants associated with risk of psychiatric diseases like schizophrenia and bipolar disorder work at the cellular level.

“The science put forward by this cohort is exceptionally novel and creative and is sure to push at the boundaries of what is known,” said NIH Director Francis S. Collins in a news release announcing the awards. “These visionary investigators come from a wide breadth of career stages and show that groundbreaking science can happen at any career level given the right opportunity.”

Quon’s project, entitled “Linking genetics to cellular behavior and disease via multimodal data integration,” will receive $1.5 million in support over five years. The project aims to characterize the relationship between gene regulation, neuron firing patterns and the morphology of those neurons. 

“A lot of people who study the genetics of different disorders in humans look at the impact of genetic variants on the molecular level,” said Quon. “We’re trying to connect what happens at the molecular level in neurons to cellular-level phenotypes.”

Learning how genetic variants associated with different psychiatric disorders work at the cellular level requires significant amounts of computing power. With the award, Quon and his colleagues can acquire the hardware needed to build, train and deploy complex digital models. 

“We use a lot of graphics cards and those get expensive quickly,” Quon said. 

Identifying targets for therapy

The award will also support efforts to validate predictions about which genetic variants are harmful and which are benign. Quon and his colleagues will be able to introduce specific DNA mutations into a neuron and evaluate how they impact a neuron’s response patterns. 

“Hundreds of places in the genome might harbor mutations that affect our risk of disease,” said Quon, “but we don’t actually know which mutations are the most important to target with therapies. Our work is trying to identify which mutations may have the biggest effect on neuron function and should therefore be prioritized for therapy.” 

This type of research is often stymied by the lack of an integral component: live neurons. 

“Some types of neuron function studies need access to live neurons; it’s hard to get access to live human neurons, so those datasets are rare and small,” said Quon. 

Small datasets are a huge obstacle to data analysis, so the computational framework Quon hopes to develop will enable the integration of data from both live and postmortem samples, from both humans and mice. Ultimately, using all this extra data will allow researchers to more accurately pinpoint which mutations actually result in disorders like schizophrenia.  

“By using our proposed framework to pool additional data from other sources,” said Quon, “we can boost the amount of statistical power we have, and we’ll need fewer neurons to do proper data analysis.” 

The High-Risk, High-Reward Research Program is part of the NIH Common Fund, which oversees programs that pursue major opportunities and gaps throughout the research enterprise that are of great importance to NIH and require collaboration across the agency to succeed. The program recognizes unusually innovative research from early career investigators.



Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Taenia Pisiformis Infection Alters Pregnant Rabbits’ Immune Response

September 9, 2025
blank

Tracing the Origins of Wnt Signaling Uncovers a Protein Superfamily Spanning the Tree of Life

September 9, 2025

From Quantum Mechanics to Quantum Microbes: A Yale Scientist’s Revolutionary Journey of Discovery

September 9, 2025

Scientists Harness Breakthrough Tool to Advance Canine Cancer Treatment

September 9, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ChatGPT in Nursing: Benefits and Challenges Explored

Isotope Tafel Analysis Reveals Proton Transfer Kinetics

Comparing IMU and Opto-Electronic Systems for Biomechanics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.