• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

NIH awards Steve Farber $3.3-million to identify medicines for cardiovascular disease

Bioengineer by Bioengineer
October 10, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image courtesy of Jay Thierer

Baltimore, MD–Carnegie's Department of Embryology scientist Steven Farber and team have been awarded a 5-year $3.3-million NIH grant to identify novel pharmaceuticals for combatting a host of diseases associated with altered levels of lipoproteins like LDL ("bad cholesterol"). Obesity, diabetes, cardiovascular disease, fatty liver disease, and metabolic syndrome have all been linked to changes in plasma lipoproteins.

Lab efforts, led by graduate student Jay Thierer, started by creating zebrafish that have been genetically engineered to produce glowing lipoproteins, a technique they call "LipoGlo". This was achieved by attaching DNA encoding NanoLuc (a relative of the protein that makes fireflies glow) to Apolipoprotein-B (ApoB), the protein that carries bad cholesterol. Since all the types of lipoprotein particles that are thought to actually cause cardiovascular disease are made with one copy of the ApoB protein, the team just needs to quantify the amount of light coming from the fish and they know exactly how many disease causing particles there are. Finding compounds that lower ApoB levels could be an enormous boost to fighting cardiovascular disease.

To identify such compounds, Farber teamed up with Johns Hopkins Researchers Rexford Ahima, Thomas Lectka, and Jeffery Mumm and proposed a high-throughput screen that tests thousands of small molecules in live zebrafish larvae to identify those that lower ApoB. In addition, they developed a collection of secondary screens to help them figure out how a given compound achieves its ApoB-lowering effect.

What sets this research apart is its ability to study cardiovascular disease in the context of a living organism. Previous attempts to develop cardiovascular disease drugs have almost exclusively relied on studying a single cell type, such as finding ways to prevent liver cells from producing cholesterol. However, it is remarkably difficult to predict how changes in one cell type will affect the rest of the organism, as many tissues including muscle, fat, blood vessels, the liver, the intestine, and the brain all interact and communicate to regulate cholesterol.

What has made this effort possible are the unique attributes of the larval zebrafish system. Zebrafish have almost all of the major components of human metabolism, but in a small, rapidly developing organism that can be moved around and placed in tiny wells with robots. In a single week, the team can raise over 20,000 larvae and test hundreds of compounds, something that might take months or years in other vertebrate animal systems. Additionally, larvae are translucent which enables the team to monitor a host of other aspects of metabolic health such as fat accumulation and inflammation using other genetically engineered fish with "glowing" markers of biological processes. Mumm's lab pioneered the zebrafish robotic platform for studies of eye biology and brought that expertise to the team. Lectka's expertise in small molecule chemistry will assist in selecting the most promising compounds that could most easily be transformed into drugs for humans. These carefully selected candidate drugs will be handed off to the Ahima lab to test their efficacy in mouse models of obesity and cardiovascular disease.

Farber pointed out that "25% of the world's population dies of cardiovascular disease. While statin drugs have had a major impact on reducing mortality, folks still die from cardiovascular disease." He went on to explain that although ApoB has a well-known role in metabolic disease, this protein is "enormous," making it nearly impossible to study using traditional molecular techniques. By embracing state-of-the-art genome engineering approaches, Farber and his team were able to overcome this issue and generate zebrafish with glowing lipoproteins.

Farber remarked: "While most of the field works in humans or mouse, my lab pioneered the use of zebrafish for studies of lipid metabolism. What we proposed is simply not possible in any other vertebrate model system. I will never forget the day Jay walked into my office and showed me images of larval zebrafish revealing the locations of all of the ApoB containing lipoproteins…just so cool."

###

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Contact

Steven Farber
[email protected]
410-246-3072
@carnegiescience

https://carnegiescience.edu/

Share12Tweet7Share2ShareShareShare1

Related Posts

Unraveling How Sugars Influence the Inflammatory Disease Process

November 4, 2025

Integrating Medical Student Mentors in Engineering Teams

November 4, 2025

Controlling Urination via Spinal EUS Nerve Stimulation

November 4, 2025

Cabozantinib Alters Hormone Levels in Kidney Cancer Patients

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling How Sugars Influence the Inflammatory Disease Process

Parkinson’s Mouse Model Reveals How Noise Impairs Movement

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.