• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

NIH and National Science Foundation to award $15.4 million for RNA research

by
June 24, 2024
in Health
Reading Time: 3 mins read
0
NIH and National Science Foundation to award $15.4M for RNA research
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The National Institutes of Health (NIH) has partnered with the U.S. National Science Foundation (NSF) to provide approximately $15.4 million over three years for research into the structures, functions and interactions of ribonucleic acid (RNA), as well as the creation of RNA-based technologies. RNA sequencing and the mapping of RNA modifications have gained significant momentum in the genomics community in recent years, with a new report from the National Academies of Sciences, Engineering, and Medicine outlining a roadmap for the field to build technology and infrastructure to allow researchers to more completely study and catalog RNA and its modifications. 

NIH and National Science Foundation to award $15.4M for RNA research

Credit: U.S. National Science Foundation

The National Institutes of Health (NIH) has partnered with the U.S. National Science Foundation (NSF) to provide approximately $15.4 million over three years for research into the structures, functions and interactions of ribonucleic acid (RNA), as well as the creation of RNA-based technologies. RNA sequencing and the mapping of RNA modifications have gained significant momentum in the genomics community in recent years, with a new report from the National Academies of Sciences, Engineering, and Medicine outlining a roadmap for the field to build technology and infrastructure to allow researchers to more completely study and catalog RNA and its modifications. 

“A deeper understanding of RNA and its potential applications can advance our knowledge of living systems and can have profound impacts on human health.” said Carolyn Hutter, Ph.D., director of the Division of Genome Sciences at the National Human Genome Research Institute, part of NIH. 

NIH will provide approximately $2.7 million, pending availability of funds, to support the work of two research groups while NSF has awarded over $12.7 million among nine research groups through NSF’s Molecular Foundations for Biotechnology program.  

The NIH-funded projects include:  

  • A research team at the University of Massachusetts, Amherst, will focus on synthesizing long RNA molecules using a microfluidics platform, which consists of miniature chambers through which fluids are moved or stored. Scientists use long RNA molecules to probe genomic pathways and develop new drugs, but they can be difficult to synthesize because of their unstable nature. Current methods may not be able to produce high quantities of molecules with the correct sequences and structures. The group aims to develop a platform for synthesizing long, designer RNA molecules that maintain their correct folded structures, opening new avenues for scientific research. 

  

  • A scientific team at the University of Michigan, Ann Arbor, will expand the capabilities of two technologies called nanopore sequencing and mass spectrometry, enabling researchers to determine the sequence of any RNA molecules, including those containing modifications that are difficult to detect. Cells chemically modify RNA molecules to change their formation, function, stability and location, which can affect important processes such as protein production and biological transition into different cell types. While RNA modifications have been implicated in a variety of human disorders and diseases, researchers are still trying to understand how each modification affects RNA function. The group will study modifications of several types of RNA in yeast, humans and a single-cell organism known as T. kodakarensis. 

  

“Discoveries about RNA and its applications in the last several decades have transformed the field of science and medicine,” said Ian Nova, Ph.D., program director in NHGRI’s Division of Genome Sciences. “Our continued exploration of RNA and its associated innovations will inevitably shape the future of biomedicine.” 

RNA is a molecule that is in all living cells and plays a role in nearly all biological processes, including carrying instructions for making proteins, helping build proteins and turning genes on and off. While RNA was discovered over a century ago, researchers are still uncovering new RNA-related pathways and RNA structures. Recent scientific advances have harnessed RNA to develop technologies and therapeutics such as small interfering RNA-based drugs and messenger RNA-based vaccines against cancers and infectious diseases.  

 



Share12Tweet8Share2ShareShareShare2

Related Posts

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

September 11, 2025

Creating AI Companions for Caregiver Role Transitions

September 11, 2025

New Guidelines for Anti-VEGF Therapy in Diabetic Retinopathy

September 11, 2025

Ether-Lipid Buildup Fuels Liver Cancer Progression

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Complete Chloroplast Genome of Cyathea delgadii Revealed

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

Creating AI Companions for Caregiver Role Transitions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.