• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Nickel-modified In2O3 with inherent oxygen vacancies for CO2 hydrogenation to methanol

Bioengineer by Bioengineer
March 20, 2024
in Chemistry
Reading Time: 2 mins read
0
The Ni-promoted In2O3 catalyst with more subsurface Ni showed higher methanol selectivity and productivity.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This study is led by Prof. Peng Gao and Prof. Shenggang Li (CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute).

The Ni-promoted In2O3 catalyst with more subsurface Ni showed higher methanol selectivity and productivity.

Credit: ©Science China Press

This study is led by Prof. Peng Gao and Prof. Shenggang Li (CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute).

In this paper, the hydrogenation metals (Co, Ni and Cu) promoted In2O3 catalysts with a similar loading of 1 wt.% were prepared by the hydrothermal method. It was found that the Ni-promoted In2O3 catalyst with high dispersion possesses the largest amount of oxygen vacancies and the strongest ability for H2 activation, and exhibited the highest CO2 conversion and STY of CH3OH, which reached 0.390 gMeOH gcat−1 h−1 with CH3OH selectivity of 68.7%. In addition, the Ni-promoted In2O3 catalyst exhibits very stable performance over 120 h on stream, which suggests the promising prospect for industrial applications. Moreover, a series of Ni modified In2O3 catalysts with different surface Ni contents were prepared to further investigate the effect of oxygen vacancy properties on the catalytic behavior of CO2 hydrogenation to methanol. Surface Ni doping was found to promote the formation of oxygen defects on the In2O3 surface, resulting in higher CO2 reactivity, whereas the Ni-promoted In2O3 catalyst with more subsurface Ni showed higher methanol selectivity and productivity. The catalytic performance of our Ni/In2O3 catalysts was further rationalized by DFT calculations and microkinetic simulations. DFT-based microkinetic simulations show that CO formation is preferred at the oxygen vacancy site on the surface-doped Ni/In2O3 catalyst, whereas CH3OH formation is favored at that on the subsurface-doped Ni/In2O3 catalyst especially at relatively low reaction temperatures. This work thus provides theoretical guidance for improving the CO2 reactivity of In2O3-based catalysts while maintaining high methanol selectivity.

This study not only provides a better understanding of the effect of transition-metal promoters with high dispersion on the catalytic performance, but also suggests that DFT-based microkinetic simulations can provide reliable prediction on the catalytic activity and product selectivity for the CO2 hydrogenation to methanol reaction over industrially relevant metal-promoted oxide catalysts, which is crucial for their computer-aided rational design.

See the article:

Nickel-modified In2O3 with inherent oxygen vacancies for CO2 hydrogenation to methanol

http://engine.scichina.com/doi/10.1007/s11426-023-1929-1



Journal

Science China Chemistry

DOI

10.1007/s11426-023-1929-1

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

BESSY II Unveils Phosphorus Chains: A One-Dimensional Material Exhibiting Unique 1D Electronic Behavior

October 21, 2025
Sustainable Photocatalysis Powered by Red Light and Recyclable Catalysts

Sustainable Photocatalysis Powered by Red Light and Recyclable Catalysts

October 21, 2025

Compact Chaos-Enhanced Spectrometer Revolutionizes Precision Analysis

October 21, 2025

Shanghai Tower Inspires Creation of First Synthetic Dynamic Helical Polymer

October 21, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1270 shares
    Share 507 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    303 shares
    Share 121 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    137 shares
    Share 55 Tweet 34
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    130 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Segatella Worsens Heart Failure via TLR4 Pathway

Leveraging Magnetized Plasmas: A Breakthrough Approach to Nanomaterial Design

Childhood Trauma Linked to Mobile Phone Addiction

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.