• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Newly discovered disease mechanism for type 2 diabetes

Bioengineer by Bioengineer
June 6, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Johan Wingborg

A newly discovered mechanism behind reduced insulin production in type 2 diabetes is now being presented. In an article in Nature Communications, researchers at Sahlgrenska Academy describe how insulin-producing cells regress in their development, become immature, and do not work properly. A finding that opens the doors to new clinical treatments.

"If you can affect things at the cellular level and restore the body's own rapid regulation, you can more accurately adjust blood sugar compared to what is possible with insulin injections," says Anders Rosengren, associate professor who is active at the Department of Neuroscience and Physiology as well as the Wallenberg Centre for Molecular and Translational Medicine at the University of Gothenburg.

It has long been known that the insulin-producing cells fail in type 2 diabetes. The body does not get enough insulin and blood sugar rises. One theory argues that the insulin-producing cells become fewer in number, while another argues that their function is impaired.

The new explanation, which combines the debated theories, states that the insulin-producing cells regress in their development and become immature. This reduces the number of functional cells.

The gene that drives the process

With the help of 124 tissue samples, of which 41 were from people with type 2 diabetes, the researchers were able to determine which genetic changes in the cells affected the course of the disease the most. Anders Rosengren describes the analysis by comparing it to the world of air travel.

"All airports are connected in a large network, but a disruption at a hub like Frankfurt Airport is much more serious than a disruption in Gothenburg. We searched out the hubs, i.e. the key genes, and the major links. Of almost 3,000 genes that were changed in diabetes, 168 could be described as Frankfurt genes. It was these we focused on," he says.

As the analysis continued, it showed that the gene SOX5, which was previously unknown in a diabetes context, affects the disease.

"If you experimentally suppress and deactivate SOX5, the function of the 168 genes deteriorate and the cells decrease in maturity. If you then increase the levels of SOX5, the 168 genes also increase and insulin delivery can be normalized," explains Anders Rosengren.

"It's very exciting to see. It was almost like a volume control, where you could increase or decrease the maturity level of the insulin-producing cells.

Existing medicines

According to Anders Rosengren, it will not be long until we see medicines that restore the maturity of insulin-producing cells. They may already exist in the form of medicines used for other diseases.

At the same time, he emphasizes the importance that healthy lifestyle habits play in type 2 diabetes. Current research shows that SOX5 decreases if you eat unhealthy foods or exercise too little.

"It is important to remember that everyone is different. Some manage a long time despite unhealthy lifestyle habits. For others, the tipping point is much earlier. But, regardless of genetic conditions, you can do something about your disease," says Anders Rosengren.

###

Link to article: https://www.nature.com/articles/ncomms15652

Principle investigator: Anders Rosengren +46 (0)705 316 704; [email protected]

Portrait: Johan Wingborg

Press contact: Margareta Gustafsson Kubista +46 (0)705 301 980; [email protected]

Media Contact

Anders Rosengren
[email protected]
46-070-531-6704
@uniofgothenburg

http://www.gu.se/english

Original Source

http://sahlgrenska.gu.se/english/research/news-events/news-article//newly-discovered-disease-mechanism-for-type-2-diabetes.cid1472500

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Predicting Oral Bioavailability via Transfer Learning Techniques

September 11, 2025

Enhancing Clinician Decision-Making: The SHARE Approach

September 11, 2025

Fluctuating DNA Methylation Maps Cancer Evolution

September 11, 2025

New Malawi Study Finds Breathlessness Significantly Raises Long-Term Mortality Risk

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    62 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Radiomics Predicts Lenvatinib Success in Liver Cancer

Predicting Oral Bioavailability via Transfer Learning Techniques

Enhancing Clinician Decision-Making: The SHARE Approach

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.