• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Newly discovered brain mechanism linked to anxiety, OCD

Bioengineer by Bioengineer
June 5, 2023
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The pandemic and its aftermath have raised anxiety to new levels. But the roots of anxiety-related conditions, including obsessive-compulsive spectrum disorder (OCSD), are still unclear. In a new study, University of Utah Health scientists discovered insights into the importance of a minor cell type in the brain—microglia—in controlling anxiety-related behaviors in laboratory mice. Traditionally, neurons—the predominant brain cell type—are thought to control behavior.

New insights into OCD, chronic anxiety

Credit: Charlie Ehlert, University of Utah Health

The pandemic and its aftermath have raised anxiety to new levels. But the roots of anxiety-related conditions, including obsessive-compulsive spectrum disorder (OCSD), are still unclear. In a new study, University of Utah Health scientists discovered insights into the importance of a minor cell type in the brain—microglia—in controlling anxiety-related behaviors in laboratory mice. Traditionally, neurons—the predominant brain cell type—are thought to control behavior.

The researchers showed that, like buttons on a game controller, specific microglia populations activate anxiety and OCSD behaviors while others dampen them. Further, microglia communicate with neurons to invoke the behaviors. The findings, published in Molecular Psychiatry, could eventually lead to new approaches for targeted therapies.

“A small amount of anxiety is good,” says Nobel Laureate Mario Capecchi, Ph.D., a distinguished professor of human genetics at the Spencer Fox Eccles School of Medicine at University of Utah and senior author of the study. “Anxiety motivates us, spurs us on, and gives us that extra bit of push that says, ‘I can.’ But a large dose of anxiety overwhelms us. We become mentally paralyzed, the heart beats faster, we sweat, and confusion settles in our minds.” 

The newly identified mechanisms could be important for maintaining behaviors within the healthy range under normal conditions. Under pathological conditions, the mechanisms could drive behaviors that become debilitating, Capecchi says.

“This work is unique and has challenged the current dogma about the role of microglia function in the brain,” says Naveen Nagajaran, Ph.D, a geneticist and neuroscientist at U of U Health and the study’s lead author.

Manipulating microglia

Mice with OCSD-like behaviors can’t resist grooming themselves. They lick their bodies so much that their fur sloughs off, and they develop welts. Previously, Capecchi’s team discovered that a mutation in a gene called Hoxb8 caused mice to show signs of chronic anxiety and to groom themselves excessively. Unexpectedly, they identified that the source of these behaviors was a type of immune cell called microglia. Accounting for only 10% of cells in the brain, microglia had been thought of as the brain’s “trash collectors” that disposed of dying neurons—the most common brain cell—and abnormally shaped proteins. Their discoveries were also among the first to reveal that Hoxb8 microglia were important for controlling behavior by communicating with specific neuronal circuits. 

But how microglia accomplished these tasks remained a mystery. To learn more, Nagajaran turned to optogenetics, a technique that combines laser light and genetic engineering. Like playing a video game, he used the laser to stimulate specific populations of microglia in the brain.

To the researchers’ amazement, they could turn on anxiety-related behaviors with the flip of a switch. When they used the laser to stimulate one subpopulation, Hoxb8 microglia, the mice became more anxious. When the laser triggered Hoxb8 microglia in other parts of the brain, the mice groomed themselves. Targeting Hoxb8 microglia in yet another location had multiple effects: the mice’s anxiety increased, they groomed themselves, and they froze, an indicator of fear. Whenever the scientists turned the laser off, the behaviors stopped.

“That was a big surprise for us,” Nagarajan says. “It is conventionally thought that only neurons can generate behaviors. The current findings shed light on a second way that the brain generates behaviors using microglia.” In fact, stimulating microglia with the laser caused the neurons sitting next to them to fire more strongly, suggesting that the two cell types communicate with one another to drive distinct behaviors.

Further experiments revealed yet another layer of control by a population of microglia that do not express Hoxb8. Stimulating “non-Hoxb8” and Hoxb8 microglia at the same time prevented the onset of anxiety and OCSD-like behaviors. These results suggested that the two populations of microglia act like a brake and an accelerator. They balance each other out under normal conditions and induce a disease state when the signals are off-balance.

The research shows that location and type of microglia are two characteristics that appear to be important for fine-tuning anxiety and OCSD behaviors. From there, microglia communicate with specific neurons and neural circuits that ultimately control behavior, Capecchi says. “We want to learn more about the two-way communications between neurons and microglia,” he says. “We want to know what’s responsible for that.” Defining these interactions in mice could lead to therapeutic targets for controlling excessive anxiety in patients.

                                                            ###

The study, “Optogenetic stimulation of mouse Hoxb8 in specific regions of the brain induces anxiety, grooming, or both,” appears in Molecular Psychiatry.

About University of Utah Health

University of Utah Health  provides leading-edge and compassionate care for a referral area that encompasses Idaho, Wyoming, Montana, and much of Nevada. A hub for health sciences research and education in the region, U of U Health has a $458 million research enterprise and trains the majority of Utah’s physicians, and more than 1,670 scientists and 1,460 health care providers at its Colleges of Health, Nursing, and Pharmacy and Schools of Dentistry and Medicine. With more than 20,000 employees, the system includes 12 community clinics and five hospitals. U of U Health is recognized nationally as a transformative health care system and provider of world-class care.



Journal

Molecular Psychiatry

DOI

10.1038/s41380-023-02019-w

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Optogenetic stimulation of mouse Hoxb8 microglia in specific regions of the brain induces anxiety, grooming, or both

Article Publication Date

10-Apr-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Zharp1-163: Dual Inhibitor Tackles Inflammation, Kidney Injury

August 28, 2025

Enhancing Pediatric Nursing Education with Advanced Simulators

August 28, 2025

Stem Cell Co-Grafts Enhance Retinal Repair in Rats

August 28, 2025

Pennington Biomedical Study Suggests Metabolic Health During Pregnancy May Impact Outcomes More Than Weight Gain

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New CEA-Based Surveillance Boosts Gastric Cancer

Zharp1-163: Dual Inhibitor Tackles Inflammation, Kidney Injury

Enhancing Pediatric Nursing Education with Advanced Simulators

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.