• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Newly discovered bacterial transcription mechanism may inform synthetic biology engineering

Bioengineer by Bioengineer
November 6, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bacterial transcription is a production line of copying over genetic instructions from double stranded DNA to produce RNA, which is then used for the subsequent production of proteins that the bacterium needs at that moment. The line supervisors are known as sigma factors, of which there are several varieties that can be largely classified into four groups based on their architecture and genetic sequence.

Cryo-EM structure of SigI6-RNAP-promoter complex

Credit: LI Jie and FENG Yingang

Bacterial transcription is a production line of copying over genetic instructions from double stranded DNA to produce RNA, which is then used for the subsequent production of proteins that the bacterium needs at that moment. The line supervisors are known as sigma factors, of which there are several varieties that can be largely classified into four groups based on their architecture and genetic sequence.

One factor, however, has been considered “unique.” Called SigI, the factor has a hand in several regulatory responses, but it does not fit into any of the four groups. Now, researchers from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences (CAS) have discovered that the SigI are more distinct than previously understood — so much so that they require an entirely new classification group.

Their findings, published in Nature Communications on Oct. 13, may help inform the design of gene regulation tools.

In bacterial transcription, sigma factors trigger recognition of a specific promoter — or a region of genetic information right at the start of the DNA sequence that’s needed to produce a specific transcript. The researchers noted that, bafflingly, different SigIs in the same bacterium can bind to different promoters to achieve specific recognition.

Although SigIs have been studied for more than 20 years since their discovery, the molecular mechanism of the specific promoter recognition by SigI during the transcription process had remained unknown. “The existence of multiple SigIs and their role regulating the expression of a super multienzyme complex, called cellulosome, in some bacteria for efficient degradation of plant biomass raised further questions about the mechanism of specificity between different SigIs,” said Prof. FENG Yingang from QIBEBT, co-corresponding author of the study.

The researchers reconstructed two transcription open complexes formed by two SigI factors, one with SigI1 and one with SigI6, from RNA polymerase purified from the bacteria C. thermocellum with SigI factors purified from E. coli and synthesized promoters. They then used cryo-electron microscopy to determine the complexes’ structures and experimental analysis to test each structure’s function.

From structural and functional analysis, the researchers solved the problems of both SigI classification and the SigI specificity in their functions. They elucidated that SigI factors from a cellulosome-producing bacteria encompass a unique, hitherto unknown recognition mode of bacterial transcriptional promoters and represent a new distinctive class of sigma factors for bacterial transcription.

The structures showed that SigI has two structural features — one of which does not exist in other known sigma factors — that enable a distinct recognition mode for a specific promotor with -35 element.

“SigI promoter recognition of the -35 element differs completely from that of other sigma factors in this family,” FENG said. “The structures also showed that SigIs can recognize another promoter region known as -10 element using different features from the ones used by other sigma factors.”

The team plans to continue investigating the mechanism of SigI factors in the regulation of cellulosomes in C. thermocellum.

“Although we have gained some knowledge of the SigI system in transcriptional regulation of cellulosome, the understanding of cellulosome regulation is still far from complete,” FENG said. “C. thermocellum contains about 80 cellulosomal components, but only a small fraction of them were confirmed to be regulated under the control of the SigI system. Ultimately, our goal is to elucidate the molecular mechanisms governing the regulation of cellulosomes. With this knowledge, we hope to engineer cellulosome-producing bacteria to achieve a better cell factory for applications in bioenergy, synthetic biology and biotechnology.”



Journal

Nature Communications

DOI

10.1038/s41467-023-41796-4

Article Title

Structure of the transcription open complex of distinct σI factors

Article Publication Date

13-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Mitochondrial Genome Unveils Monodactylus sebae Insights

August 27, 2025
Identifying Genes Linked to Fat Traits in Xiang Pigs

Identifying Genes Linked to Fat Traits in Xiang Pigs

August 27, 2025

CircCOG5 Regulates Ferroptosis in Ovarian Cancer

August 27, 2025

Heat Stress Impact on Aged Hens’ Health and Performance

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Examining Occupational Gaps and Cognitive Decline in Seniors

OLED-Driven Metasurfaces Enable Holographic Projections

Understanding Female-to-Female Aggression in Workspaces

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.