• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Newly-discovered anti-inflammatory substances may potentially treat variety of diseases

Bioengineer by Bioengineer
May 3, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Inflammation, and in particular chronic inflammation, are major contributors to a large number of diseases, such as cancer, acute pancreatic inflammation, fatty liver disease, diabetes, ulcerative colitis, Crohn's disease, rheumatoid arthritis, chronic liver disease, atherosclerosis, multiple sclerosis, and many others. These pathological conditions are associated with the release of substances, known as pro-inflammatory cytokines, by the immune system. These substances participate in the neutralization of invading pathogens, repair injured tissues, and promote wound healing. However, during chronic or excessive activation of the immune system, when these cytokines are released in an uncontrolled manner, they can lead to unnecessary inflammation that frequently causes tissue damage.

In addition, a family of substances, designated as reactive oxygen species (ROS) is also among the major contributors to many chronic diseases. ROS are involved in oxidation processes. Although oxidative reactions catalyzed by ROS are of great importance in metabolic processes and removal of toxic substances from the body, they are also involved in major damage to cells and tissues leading to cell death, possible DNA mutations and aging. Though the presence of oxygen is necessary for maintaining life, oxygen and its derived products (ROS) are involved in a variety of toxic effects. It has been said that "without oxygen we die but oxygen kills us".

Prof. Abraham Nudelman and his graduate student Shani Zeeli, from the Department of Chemistry at Bar-Ilan University, in collaboration with Prof. Marta Weinstock and her students and assistants from the School of Pharmacy at the Hebrew University, have discovered a new family of substances which has been found to display highly potent activity against the release of pro-inflammatory cytokines and the toxicity induced by ROS. Their findings were recently published in the Journal of Medicinal Chemistry, and in other early papers.

The novel compounds synthesized and evaluated belong to a family of low molecular weight substances named indolines. In early experiments, these compounds have shown promising activity in the treatment of acute pancreatic inflammation, acute fatty liver damage, and diabetes.

"It is expected that further studies in humans will reveal the potential usefulness of these substances in the treatment of a variety of diseases where inflammation is a major contributor to the disease," says Prof. Nudelman, a lead author of the paper. Further studies on the influence of these compounds on these diseases, and other pathological conditions, are being conducted.

###

This research program has been supported by the Israel Ministry of Science and Technology, and by the Marcus Center for Medicinal Chemistry at Bar-Ilan University.

Media Contact

Elana Oberlander
[email protected]
@ubarilan

http://www.biu.ac.il

http://dx.doi.org/10.1021/acs.jmedchem.8b00001

Share12Tweet7Share2ShareShareShare1

Related Posts

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.