• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Newly characterized protein has potential to save US farmers millions annually

Bioengineer by Bioengineer
March 30, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Claire Benjamin/University of Illinois

Instead of turning carbon into food, many plants accidentally make a plant-toxic compound during photosynthesis that is recycled through a process called photorespiration. University of Illinois and USDA/ARS researchers report in Plant Cell the discovery of a key protein in this process, which they hope to manipulate to increase plant productivity.

"Photorespiration is essential for C3 plants, such as rice and soybeans, but operates at the massive expense of fixed carbon and energy," said project lead Don Ort, USDA/ARS scientist and the Robert Emerson Professor of Plant Biology at Illinois. "We have identified photorespiration as a primary target to improve photosynthetic efficiency as a strategy to improve crop yield. Successfully re-engineering photorespiration requires deep knowledge of the process, for which understanding of transport steps is most lacking."

Related to a family of transport proteins that move bile around in animals, the newly discovered role of the plant protein Bile Acid Sodium Symporter 6 (BASS6) is to transport the toxic product glycolate out of the chloroplast where it is recycled into a useful sugar molecule (glycerate) through a series of chemical reactions, which release carbon dioxide and harmful ammonia while sacrificing energy.

Since the 1960s, researchers have known that plant chloroplasts export two molecules of glycolate to recover one molecule of glycerate. However, the chemical equation did not add up until now with the discovery of the function of BASS6, the second glycolate transport protein to be described since the glycolate/glycerate exchange transporter "PLGG1" was described in 2013.

"Now we're going to try to make a shortcut to avoid all the wasteful steps in photorespiration," said Paul South, a USDA/ARS postdoctoral researcher who led this work at the Carl R. Woese Institute for Genomic Biology at Illinois. "We're building a shortcut to quickly process glycolate into glycerate instead of letting BASS6 and PLGG1 take the country roads. One of the benefits of the shortcut is that the plants don't produce ammonia, so they don't have to spend a lot of energy re-fixing the ammonia."

"We could feed around 200 million people with the calories lost to photorespiration each year just in the Midwestern United States," said co-author author Berkley Walker, an Alexander von Humboldt Postdoctoral Fellow at the University of Düsseldorf, citing his recently published simulations. "While we can't get all that yield back, even saving 5% of the energy in lost in photorespiration would be worth millions of dollars annually."

###

The paper "Bile acid sodium symporter BASS6 can transport glycolate and is involved in photorespiratory metabolism in Arabidopsis thaliana" is published by Plant Cell (DOI: 10.1105/tpc.16.00775). Co-authors include Amanda Cavanagh at Illinois and Vivien Rolland and Murray Badger at the Australian National University.

This work is supported by Realizing Increased Photosynthetic Efficiency (RIPE), a research project engineering plants to more efficiently turn the sun's energy into food to sustainably increase worldwide food productivity. This international collaboration is funded by a $25 million grant from the Bill & Melinda Gates Foundation.

A photo gallery with pictures related to this work is available online at http://bit.ly/2mGgIp5.

Media Contact

Claire Benjamin
[email protected]
217-244-0941
@IGBIllinois

http://www.igb.uiuc.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Gla-300 vs. Gla-100: Efficiency in Diabetes Across Ages

October 9, 2025

Melflufen-Dexamethasone Expands Options for Relapsed Myeloma

October 9, 2025

Navigating Global Bioethics: China’s Organoid Guidelines Explored

October 9, 2025

Tirzepatide Outperforms Semaglutide for Diabetes Control

October 9, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1150 shares
    Share 459 Tweet 287
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gla-300 vs. Gla-100: Efficiency in Diabetes Across Ages

Melflufen-Dexamethasone Expands Options for Relapsed Myeloma

Navigating Global Bioethics: China’s Organoid Guidelines Explored

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.