• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Newly characterized molecule offers possibilities for novel Alzheimer’s treatments

Bioengineer by Bioengineer
August 2, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Alzheimer's disease is an increasingly prevalent, neurodegenerative condition that erodes memory and other cognitive functions. Treatments for this complex disease have been elusive, although researchers have previously uncovered its main biological features: amyloid-beta plaques and tau tangles.

A study by researchers from Brigham and Women's Hospital (BWH), recently published in Acta Neuropathologica, investigated lesser-known molecules involved in tauopathies like Alzheimer's. They focused on microRNAs (miRNAs), gene expression regulators that bind to and destroy protein-encoding messenger RNAs. They discovered that some of these miRNAs showed neuroprotective effects; their supplementation therefore holds potential as a treatment for tauopathies.

The researchers looked at several miRNAs but focused on miR-132, which previous research has shown is downregulated in Alzheimer's and other tauopathies. They discovered that miR-132 seemed to protect against toxic amyloid-beta and tau in both rodent models and human neurons.

"Our results support the idea that miR-132 is a master regulator of neuronal health with potential as a treatment target," said lead investigator and BWH scientist, Anna Krichevsky, PhD.

The team first looked at primary cortical and hippocampal neurons taken from both normal and tauopathic mice. To examine the neuroprotective properties of naturally occurring miRNAs, they tested 63 neuronal miRNAs, then inhibited them with miRNA-binding molecules called anti-miRNAs. They found that inhibition of some miRNAs seemed to protect against, and others to exacerbate, amyloid-beta pathology and associated glutamate excitotoxicity. Of these, miR-132 was the most neuroprotective miRNA.

They confirmed the neuroprotective properties of miR-132 by designing miR-132 mimics and introducing them to the mouse cells. They observed reduced levels of toxic forms of tau, glutamate excitotoxicity and cell death. They also examined miR-132 supplementation in live mice models of human neurodegenerative disease by injecting miR-132 by way of a viral vector. Compared to controls, miR-132-injected mice showed reduced tau pathology and enhanced hippocampal long-term potentiation, a process involved in memory formation.

When the researchers next introduced miR-132 mimics to human cells, they saw similar results: reduced toxic forms of tau and less cell death.

According to Krichevsky, miRNA research offers a fresh perspective in the search for possible Alzheimer's treatments. MicroRNAs were discovered more recently than mRNAs and proteins, and their complex roles in multiple biological pathways have caused many to doubt that their manipulation could be a viable therapeutic strategy.

"Now that we have the knowledge and technologies that enable manipulation of miRNA, we can explore new possibilities," said Krichevsky. "In the last 30 years, research has focused mostly on amyloid. We're still hopeful about that approach, but we must invest in new strategies as well."

###

This study was funded by grants from Alzheimer's Association (NIRG-09-132844) and Tau Consortium/Rainwater foundation.

Paper cited: Fatimy R et al. "MicroRNA?132 Provides Neuroprotection for Tauopathies via Multiple Signaling Pathways." Acta Neuropathologica. DOI: 10.1007/s00401-018-1880-5.

Media Contact

Haley Bridger
[email protected]
617-525-6383
@BrighamWomens

http://www.brighamandwomens.org

http://dx.doi.org/10.1007/s00401-018-1880-5

Share12Tweet7Share2ShareShareShare1

Related Posts

Notch Signaling Directs Monocyte Progenitors During Inflammation

November 11, 2025

New Molecule Lowers Ethanol Consumption and Drinking Motivation in Mice, Revealing Sex-Specific Effects

November 11, 2025

New Research Reveals the Impact of Hormones on Decision-Making and Learning

November 11, 2025

Validating the German Nursing Brand Image Scale

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Notch Signaling Directs Monocyte Progenitors During Inflammation

Deep Learning Enhances Micro-LED Gas Sensor Identification

New Molecule Lowers Ethanol Consumption and Drinking Motivation in Mice, Revealing Sex-Specific Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.