• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New ways to create and deliver medications for immune-medicated neuropathies

Bioengineer by Bioengineer
July 6, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at LSTM are looking at new ways to create and deliver medications for a wide range of immune-medicated neuropathies, by developing new synthetic versions of the treatment currently seen as the last resort option by doctors; intravenous immunoglobulin (IVIg) therapy.

IVIg serves as a mainstay therapy for conditions including chronic inflammatory polyneuropathy (CIDP) and Guillain-Barré syndrome, which has come to the world's attention in recent months as a consequence of the Zika virus outbreak. The worldwide consumption of IvIg has increased threefold since 1980 with 100 tons being injected intravenously each year, this has impacted on supplies both within the NHS and globally, which are now critically limited.

This lack of availability combined with significant clinical limitations stems from the dependence on human donors and the fact that less than 5% of injected IVIg is therapeutically active, meaning that huge doses are required; the hunt for biomimetic replacements is now urgent. A group led by LSTM's Professor Richard Pleass is at the forefront of that search having developed a number of synthetic alternatives.

In a paper published in the Journal of Biological Chemistry, Professor Pleass and colleagues describe the importance of sugars called sialic acid within these synthetic structures to increase their ability to bind effectively with receptors in the human body. "One of the major problems with IVIG is that a patient requires a huge dose for the treatment to be effective, which can lead to adverse events due to excessive protein loading." Explains Professor Pleass: "We have found that by adding sugars to the synthetic compound and moving their position within it, we can make up to 80% of this synthetic product active, which means that only a fraction would be needed for effective treatment, reducing the risk of adverse effects and significantly lowering the cost of treatment."

The project team, made up researchers from LSTM and the University of Oxford, describe these synthetic replacements for IvIg enriched for these special sialic acids in the paper and will now work with colleagues at the Heinrich-Heine University in Dusseldorf to test if their lead compounds are better than IVIg at protecting the central nervous system from disease. "There is a massive potential for this work." Continued Professor Pleass: "The fact that we have found a way to enrich sialyated products for human use means that these compounds, which can be produced at a fraction of the cost of current treatment, could bring relief to millions of people globally."

###

Media Contact

Clare Bebb
[email protected]
@LSTMnews

http://www.liv.ac.uk/lstm

http://www.lstmed.ac.uk/news-events/news/research-team-at-lstm-develop-new-ways-to-create-and-deliver-medications-for-a-wide

Related Journal Article

http://dx.doi.org/10.1074/jbc.M117.795047

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Exploring ADP-Ribosyltransferases in Pathogenic Legionella

Exploring ADP-Ribosyltransferases in Pathogenic Legionella

October 18, 2025
Sexual Health’s Impact on Brain and Mental Wellbeing

Sexual Health’s Impact on Brain and Mental Wellbeing

October 18, 2025

Oxidation and Off-Flavors in Mealworm Oil

October 18, 2025

Centralized Resource Boosts Black Pepper Genomics Research

October 18, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1259 shares
    Share 503 Tweet 314
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    270 shares
    Share 108 Tweet 68
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    112 shares
    Share 45 Tweet 28
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Curcumin’s Role in Prostate Cancer Therapy

Exploring DSM-5 Traits in Eating Disorder Treatment

Optimizing Care for Saudi CKD Patients with Comorbidities

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.