• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New ultrasound ‘drill’ targets deep vein blood clots

Bioengineer by Bioengineer
June 14, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at North Carolina State University and the University of North Carolina at Chapel Hill have developed a new surgical tool that uses low-frequency intravascular ultrasound to break down blood clots that cause deep vein thrombosis. The tool is the first ultrasound "drill" that can be aimed straight ahead, allowing doctors to better target clots — which holds promise for significantly reducing treatment time. To date, the technology has been tested only in synthetic blood vessels.

Existing intravascular ultrasound tools for clearing clots emit ultrasound waves laterally. This makes it harder to target clots exclusively, meaning that the ultrasound can also damage surrounding blood vessels. However, ultrasound breaks the clots into very small pieces, so doctors don't need to use large doses of blood thinner to dissolve the clot remnants.

Another technique uses a diamond-tipped drill to effectively chew through clots. This is more targeted, posing less risk to blood vessels. However, this technique breaks the clot into relatively large pieces, requiring higher doses of blood-thinning drugs — which can pose risks of their own.

"Our new ultrasound tool is forward-facing, like a drill, but still breaks down clots into very fine particles," says Xiaoning Jiang, a professor of mechanical and aerospace engineering at NC State and corresponding author of a paper describing the work. "Our approach improves accuracy without relying on high doses of blood thinners, which we hope will reduce risks across the board."

The tool also incorporates an injection tube that allows users to inject microbubbles at the site of the clot, making the ultrasound waves more effective at breaking down the clot.

The researchers tested a prototype of the device in a synthetic blood vessel using cow's blood.

"We found that we could dissolve 90 percent of a clot in 3.5 to 4 hours without using any blood thinners at all," says Jinwook Kim, lead author of the paper and a Ph.D. student in Jiang's lab. "That's compared to 10 hours for the combination of conventional ultrasound tools and blood thinners."

"This is a successful proof of concept, and we're now in the process of securing funding to move forward with trials in an animal model," Jiang says.

The researchers have filed a patent on the technology and are interested in working with industry partners to help develop the device.

###

The paper, "Intravascular forward-looking ultrasound transducers for microbubble-mediated sonothrombolysis," is published in the Nature Publishing Group journal Scientific Reports. Paper co-authors include Wei-Yi Chang of NC State; Brooks Lindsey and Paul Dayton of the Joint Department of Biomedical Engineering at NC State and UNC; and Xuming Dai and Joseph Stavas of UNC. The work is funded, in part, by the National Institutes of Health under grant R01EB015508.

Media Contact

Matt Shipman
[email protected]
919-515-6386
@NCStateNews

Pack Proud

http://dx.doi.org/10.1038/s41598-017-03492-4

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Male-Biased Immune Changes in Late-Onset Preeclampsia

Male-Biased Immune Changes in Late-Onset Preeclampsia

December 24, 2025
blank

Mitochondrial Recombination Fuels Rapid Fish DNA Evolution

December 24, 2025

Immune Response Differences Influence Parkinson’s Disease Progression

December 24, 2025

Unlocking Xiangyang Black Pig Genetics Through Resequencing

December 24, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Education: AI-Driven Student-Centric Systems

AI-Driven ESL Materials Tailored to CEFR Levels

Active Teaching Boosts Nursing Students’ Prescription Skills

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.