• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New twist on synthesis technique developed at Rice promises sustainable manufacturing

by
September 6, 2025
in Chemistry
Reading Time: 2 mins read
0
Rice University's James Tour
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

James Tour’s lab at Rice University has developed a new method known as flash-within-flash Joule heating (FWF) that could transform the synthesis of high-quality solid-state materials, offering a cleaner, faster and more sustainable manufacturing process. The findings were published in Nature Chemistry on Aug. 8.

James Tour’s lab at Rice University has developed a new method known as flash-within-flash Joule heating (FWF) that could transform the synthesis of high-quality solid-state materials, offering a cleaner, faster and more sustainable manufacturing process. The findings were published in Nature Chemistry on Aug. 8.

Traditionally, synthesizing solid-state materials has been a time-consuming and energy-intensive process, often accompanied by the production of harmful byproducts. But FWF enables gram-scale production of diverse compounds in seconds while reducing energy, water consumption and greenhouse gas emissions by more than 50%, setting a new standard for sustainable manufacturing.

The innovative research builds on Tour’s 2020 development of waste disposal and upcycling applications using flash Joule heating, a technique that passes a current through a moderately resistive material to quickly heat it to over 3,000 degrees Celsius (over 5,000 degrees Fahrenheit) and transform it into other substances.

“The key is that formerly we were flashing carbon and a few other compounds that could be conductive,” said Tour, the T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering. “Now we can flash synthesize the rest of the periodic table. It is a big advance.”

FWF’s success lies in its ability to overcome the conductivity limitations of conventional flash Joule heating methods. The team — including Ph.D. student Chi Hun “Will” Choi and corresponding author Yimo Han , assistant professor of chemistry, materials science and nanoengineering — incorporated an outer flash heating vessel filled with metallurgical coke and a semiclosed inner reactor containing the target reagents. FWF generates intense heat of about 2,000 degrees Celsius, which rapidly converts the reagents into high-quality materials through heat conduction.

This novel approach allows for the synthesis of more than 20 unique, phase-selective materials with high purity and consistency, according to the study. FWF’s versatility and scalability is ideal for the production of next-generation semiconductor materials such as molybdenum diselenide (MoSe2), tungsten diselenide and alpha phase indium selenide, which are notoriously difficult to synthesize using conventional techniques.

“Unlike traditional methods, FWF does not require the addition of conductive agents, reducing the formation of impurities and byproducts,” Choi said.

This advancement creates new opportunities in electronics, catalysis, energy and fundamental research. It also offers a sustainable solution for manufacturing a wide range of materials. Moreover, FWF has the potential to revolutionize industries such as aerospace, where materials like FWF-made MoSe2 demonstrate superior performance as solid-state lubricants.

“FWF represents a transformative shift in material synthesis,” Han said. “By providing a scalable and sustainable method for producing high-quality solid-state materials, it addresses barriers in manufacturing while paving the way for a cleaner and more efficient future.”

This study was supported by the Air Force Office of Scientific Research, U.S. Army Corp of Engineers, and Welch Foundation.

 



DOI

10.1038/s41557-024-01598-7

Article Title

Flash-within-flash synthesis of gram-scale solid-state materials

Article Publication Date

8-Aug-2024

Tags: Energy-efficient synthesisFlash Joule heatingmaterials science innovationSolid-state materials synthesisSustainable manufacturing
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Funding Differences in Advance Care Planning Services

Revolutionizing Scripts: AI’s Role in Film and TV

Computational Study Reveals Hemodynamics in Hemifacial Spasm

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.