• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New tool to study how neuronal networks recover their function after neuron loss

Bioengineer by Bioengineer
February 18, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: J. Soriano/UB

A multidisciplinary study led by UB researchers has developed a new experimental tool that enables the application of focalized damage on an in vitro neuronal network of only a few millimetres and record the evolution of the whole network. The objective is to understand the response mechanisms that take place in the brain neuronal circuits, and which prevent a total propagation of the damage while they recover the functionality of the affected circuits. One of the main conclusions is that the network quickly activates self-regulation mechanisms that reinforce the existing connections and restore the functionality of the circuit.

The study, led by Jordi Soriano, researcher at the Institute of Complex Systems of the UB (UBICS), is framed within a multidisciplinary collaboration between UBICS, the Institute of Neurosciences of the UB (UBNeuro), the Institute of Photonic Sciences (ICFO) and Rovira i Virgili University.

The study, published in the journal eNEURO, “shows the great ability of neuronal networks to self-regulate and self-modulate to respond to sudden changes or severe alterations; it is also a good example of the importance of modelling neuronal networks as a complex system, where the whole is richer than the sum of its parts”, notes Soriano.

The brain, and in general biological neuronal networks, has response mechanisms towards neuronal loss caused by damage or by a disease. In stroke, for instance, loss of blood supply causes the death of a focalized group of neurons and the alteration of the function of damaged neuronal circuits which, at the same time, alters the function of the neighbouring circuits, potentially starting an avalanche of deterioration. Understanding how these mechanisms work at a network level is intricate due to the sheer size of the brain and the intrinsic difficulty of monitoring in detail the evolution of a great number of neurons before and after the damage. This difficulty can be addressed through the design of in vitro models such as the one proposed by the researchers.

In the experiments, researchers recorded the activity of the whole neuronal network to set their characteristic functionality. They next used a high-power laser to remove a group of neurons and, then, they recorded the network again, to monitor its development over time.

Researchers saw that the closest group of neurons to the affected area loses activity immediately, but it regains activity gradually thanks to the action of the whole network. “Surprisingly, in only fifteen minutes this group reaches activity levels that are similar to the ones from before the damage took place, despite having lost a significant number of impulses from the affected area”, says Soriano. “Since fifteen minutes are not enough -continues the researcher- to set new connections, we conclude that the network acts by reinforcing the existing connections, re-driving the flow of neuronal stimuli to the neighbours of the affected area, preventing their deterioration from happening, and therefore, a progressive collapse of the network”.

The study, moreover, strengthens the importance of in vitro models as a complementary tool to understand the complexity of the brain and its alterations. In this context, the study is part of the European project MESO-BRAIN, which counts on the participation of the UB researcher Jordi Soriano, to design model neuronal cultures to copy the structure and dynamics of brain regions, allowing researches to study in a controlled way the action of drugs and genetic therapies to treat neurodegenerative diseases.

###

Article reference:

S. Teller, E. Estévez-Priego, C. Granell, D. Tornero, J. Andilla, O. E. Olarte, P. Loza-Alvarez, A. Arenas and J. Soriano. “Spontaneous Functional Recovery after Focal Damage in Neuronal Cultures”. ENeuro, Vol. 7, Num. 1 January/February 2020. DOI: https://doi.org/10.1523/ENEURO.0254-19.2019

Media Contact
Bibiana Bonmati
[email protected]
0034-934-035-544

Original Source

https://www.ub.edu/web/ub/en/menu_eines/noticies/2020/02/031.html

Related Journal Article

http://dx.doi.org/10.1523/ENEURO.0254-19.2019

Tags: BiologyBiomechanics/BiophysicsSystems/Chaos/Pattern Formation/Complexity
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Pulp Mill Waste Transformed into Eco-Friendly Solution for Eliminating Toxic Dyes

September 27, 2025

Fluorogenic Probes Unveil Ferroptosis Onset, Progression

September 26, 2025

Cutting-Edge Adaptive Optics Boost Gravitational-Wave Discoveries

September 26, 2025

Jingyuan Xu of KIT Honored with “For Women in Science” Sponsorship Award

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    85 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Groundbreaking Genomic Test Forecasts Hormone Therapy Benefits in Recurrent Prostate Cancer Treatment

Insights into Day Program Treatment for Anorexia Caregivers

Key Insights on End-of-Life Communication in Nursing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.