• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New tool gives deeper understanding of glioblastoma

Bioengineer by Bioengineer
October 22, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – Researchers in the lab of Charles Danko at the Baker Institute for Animal Health have developed a new tool to study genetic "switches" active in glioblastoma tumors that drive growth of the cancer. In a new paper in Nature Genetics, they identified key switches in different types of tumors, including switches linked to how long a patient survives.

Glioblastoma is an aggressive cancer that forms in the brain or spinal cord. "It's a devastating disease, and there are no good treatment options," said lead author Tinyi Chu, a graduate fellow in Danko's lab. Even when patients undergo treatment, most survive just 15 months post-diagnosis.

In the new study, Danko's group partnered with colleagues at the State University of New York Upstate Medical University to analyze 20 glioblastoma samples from its tissue bank.

"A lot of diseases, including cancer, fundamentally are defects in how our genes are used, not necessarily in the genes themselves," said Danko, assistant professor of biomedical sciences. Genes make up only two percent of our genome. Switches called transcription factors bind to the genome to turn those genes on and off, which trigger the cellular changes that cause disease.

To analyze the tumors, the researchers used a technique called ChRO-seq that creates a map of which switches are active and which genes they turn on. Co-author Hojoong Kwak, Cornell assistant professor of molecular biology and genetics, initially invented ChRO-Seq as a graduate student at Cornell University, and collaborated with Danko's group to develop the new application.

Using ChRO-seq data, the team was able to classify the glioblastomas into subtypes, based on which particular switches were active in the different tumors compared to healthy brain tissues. They also identified three switches that will be tested in larger studies to determine their ability to predict which patients will survive longer with the disease, including two switches whose connections were previously unknown.

Chu is now analyzing an even larger group of glioblastomas to link patient survival and treatment outcomes with the active switches in each tumor. He hopes the results could inform personalized treatment plans for patients or help to develop new therapies in the future.

The new technique studies not only cancer, but many other diseases caused by malfunctions in gene regulation, such as certain types of heart or autoimmune diseases. "ChRO-seq gives you a lot of information about what switch is turning on a tumor or a diseased cell," said Danko. "It gives you a starting point to think about how you can shut that switch off."

###

Cornell University has dedicated television and audio studios available for media interviews supporting full HD, ISDN and web-based platforms.

Media Contact

Lindsey Hadlock
[email protected]
607-269-6911
@cornell

http://pressoffice.cornell.edu

http://dx.doi.org/10.1038/s41588-018-0244-3

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Real-Time Liver Injury Monitoring Using Liquid Crystal Microcavity Biosensors with WGM Lasers

October 9, 2025
Uncovering the Genetic Blueprint Behind Condensed Tannin Accumulation in Wheat Grains

Uncovering the Genetic Blueprint Behind Condensed Tannin Accumulation in Wheat Grains

October 9, 2025

How Fruit Flies Reveal the Secrets of Savoring Flavor

October 9, 2025

Age-Related Sarcopenic Obesity Alters Muscle Quality Moderators

October 9, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1162 shares
    Share 464 Tweet 290
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tunisian High-Grade Ovarian Cancer Mutation Insights

CRISPR Screen Identifies G2E3 in Autophagy, Cancer

Factors Influencing Nurse Work Engagement in Western Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.