• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New tool for female reproductive genetics

Bioengineer by Bioengineer
May 29, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Carnegie Institution for Science

Baltimore, MD–The fruit fly Drosophila melanogaster is a powerful model organism for studying animal and human development and disease. It is low cost, generates rapidly, and there are many tools to genetically modify its cells. One tool is called the Gal4/UAS two-component activation system. It is a biochemical method used to study the process of turning a gene on (gene expression) and gene function. Although it has been a mainstay of Drosophila genetics for twenty-five years, it only functions effectively in non-reproductive cells, not in egg-producing cells. It has not been known why. Now, Carnegie's Steven DeLuca and Allan Spradling have discovered why and the have developed a new tool that can work in both cell types. The research is published in the June 2018 Genetics.

The Gal4 gene is a transcription factor. Transcription factors encode proteins that turn genes on. The Gal4 protein recognizes a so-called upstream activator sequence (UAS), which can induce the expression of a gene of interest. A special version of the UAS was made at the Department of Embryology in 1998, called UASp, to work during egg-cell development. But the fact that different tools are needed for non-reproductive cells and egg-forming cells has been a major limitation.

The original pUASt vector–a molecule that ferries foreign genetic material into another cell–contains a promotor called Hsp70. As the name suggests, promotors are bits of DNA that initiate or promote gene transcription. Researchers have developed several varieties to improve its expression. Hsp70 is a member of a family of proteins with similar structures in most all living organisms and are an important for protein folding and for protecting cells from stress. The mechanisms of protein folding are vital to life and to understanding diseases.

The variations of UAS, however, did not correct the major problem of poor genetic activity in the female egg-producing system compared with non-reproductive tissues. The main stumbling block to obtaining a widely effective GAL4 vector has been the lack of understanding why UASt functions poorly in egg-producing cells and the lack of research comparing UASp and UASt promoters.

DeLuca and Spradling studied the differences between the UASp and UASt promoters. Their research agreed with previous reports that UASt worked better than UASp in all non-reproductive tissues while UASp worked better in the female egg-producing system.

They also looked at the reason for the extremely weak UASt expression in the female reproductive system. The evidence indicated that non-coding RNA molecules (called piRNA ) orchestrated the silencing that limited UASt expression.

They then looked at where these UASt-piRNAs originated by testing to see if Hsp70 piRNAs were responsible for silencing. Their results strongly indicated that UASt is normally silenced by Hsp70 piRNAs and that UASt is better than UASp in cells lacking Hsp70 piRNAs.

"We next attempted to create a new version of the UAS expression vector that works well in both the non-reproductive cells and the egg-producing system, "remarked DeLuca. "We hypothesized that Hsp70 piRNAs might recognize UASt RNA to initiate piRNA silencing. To prevent Hsp70 piRNAs from recognizing UASt RNA, we trimmed down the UASt vector's nucleotides–the basic units of DNA and RNA–to be shorter than a single piRNA. We went from 213 nucleotides to 19 nucleotides. We named this shortened variant 'UASz,'because we hoped it would be the last one anyone would make!"

The scientists found that UASz was expressed about 4 times higher than UASp at all stages in the egg-producing system.

Spradling remarked, "UASz is a superior expression vector over UASp in all tissues, and it is equivalent to UASt in many, but not all, non-reproductive tissues. It is an unequivocal upgrade for all applications. This is a major hurdle overcome for reproductive studies. We hope it will unlock the floodgates of research in this area and others."

###

This work was supported by the Helen Hay Whitney Foundation (E.G.) and Howard Hughes Medical Institute, in addition to Carnegie.

Media Contact

Allan Spradling
[email protected]
@carnegiescience

https://carnegiescience.edu/

Share12Tweet8Share2ShareShareShare2

Related Posts

Nanomedicine: A New Frontier in Targeting Metastasis

September 12, 2025

New Phthalide Compounds Show Promise as Antifungal Agents

September 12, 2025

Overcoming Challenges in Treating Severe Eating Disorders

September 12, 2025

Necroptosis Creates Soluble Tissue Factor Driving Thrombosis

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanomedicine: A New Frontier in Targeting Metastasis

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

New Phthalide Compounds Show Promise as Antifungal Agents

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.