• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New tool can help estimate genetically modified pollen spread

Bioengineer by Bioengineer
April 10, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Food purists may have cause to celebrate thanks to a recent international study directed by the University of British Columbia. The study, which evaluated the spread of genetically modified (GM) organisms to non-modified crops, has implications from farm to family.

"Trying to figure out how far GM pollen will travel is really difficult," says study co-author Rebecca Tyson, associate professor of mathematics at UBC Okanagan.

"It is important to have accurate tools to estimate this, so that unintentional cross-pollination of GM material to non-GM crops can be minimized."

According to stastista.com, genetically modified crops in Canada are mostly located in Ontario and Quebec and consist of canola, soybeans, corn and sugar beets. More than 90 per cent of the canola grown in Canada is genetically modified.

Tyson suggests that the simplest way to minimize cross fertilization between crops is to separate them. Up until now, the isolation distances have been somewhat haphazardly determined. Previous estimates have been based on two standard models, which either overestimate or underestimate pollen movement. The gap between these two distances makes prediction difficult and thus necessitates improved calculations, she explains.

Tyson's research offers a new analytical tool which can provide a much improved estimate of how far pollen will travel.

Along with colleagues from the Université catholique de Louvain (Belgium) and Delft University (The Netherlands), she developed a mathematical model of pollen dispersal by bees, based on field experiments.

"Our results suggest that separation distances of several hundred metres, proposed by some European countries, is unnecessarily large but separation by 40 metres is not sufficient," says Tyson. "Using our model, we can calculate and suggest separation sizes with better accuracy. For example, we have estimated that for a 0.9 per cent cross-pollination rate, the ideal distance of separation between two crops is between 51 and 88 metres, depending on crop size and type."

These numbers are specific to particular crops and landscapes, she explains, but the predictive ability is the same.

"We believe that our model provides a more accurate assessment of GM pollen cross-pollination than previous models," adds Tyson. "We are hopeful these findings will simplify the decision-making process for crop-growers and policy makers."

###

This research was published in a recent issue of the Journal of the Royal Society Interface.

Media Contact

Christine Zeindler
[email protected]
250-215-5240

http://ok.ubc.ca/welcome.html

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Nanomedicine: A New Frontier in Targeting Metastasis

September 12, 2025
blank

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

September 12, 2025

New Phthalide Compounds Show Promise as Antifungal Agents

September 12, 2025

Overcoming Challenges in Treating Severe Eating Disorders

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanomedicine: A New Frontier in Targeting Metastasis

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

New Phthalide Compounds Show Promise as Antifungal Agents

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.