• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New test distinguishes Zika from similar viral infections

Bioengineer by Bioengineer
July 18, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology company, is a simple, cost-effective way to determine if a person's infection is from the Zika virus or another virus of the same family, such as dengue and West Nile viruses.

Zika is a mosquito-borne disease and is linked to severe congenital birth defects. Assays already exist to detect Zika virus infection, but they either work only shortly after infection or are poor at differentiating Zika from other flaviviruses. The limited ability of assays to detect Zika virus has led to difficulty in determining the prevalence of Zika virus infections, the incidence of congenital Zika syndrome and the frequency of neurological complications associated with Zika virus infections.

The new assay has very high sensitivity (91.8 percent) and specificity (95.9 percent) for identifying Zika virus infections. The assay is currently in the licensing process and researchers hope it will be available to the medical community soon.

"The whole world has been in urgent need of a serological method to distinguish dengue virus from Zika virus infections, and this the first to have such high sensitivity and specificity in dengue-endemic regions," said Eva Harris, study co-author and UC Berkeley professor in the Division of Infectious Diseases and Vaccinology at the School of Public Health.

The article will be published online the week of July 17 in the journal Proceedings of the National Academy of Sciences. The research was supported, in part, by grants from National Institutes of Health.

Utilizing its proprietary CellClone discovery technology, Humabs generated a new human antibody to the Zika virus, which the company then used to develop the assay. The assay is based on a well-established approach to detecting viral infections, but the new antibody and protocol give the assay superior sensitivity and specificity, two key assay metrics.

The assay was implemented in five countries and tested using a large number of clinical samples from travelers and patients living in areas with a high level of exposure to Zika virus and other flaviviruses. The new assay was highly sensitive, specific and robust, according to the study data. When the assay was run on patients infected with Zika virus and also on a control group of 540 patients infected by other flaviviruses or other viruses, plus healthy donors, the specificity was 95.9 percent.

The assay was developed using detailed patient samples from Harris's collaborative studies in Nicaragua, a large step forward over previous studies. These samples included multiple, longitudinal samples from Zika patients, with or without prior exposure to dengue virus, and samples from dengue patients infected either once or more than once with different types of the dengue virus. The samples were obtained from a 14-year study of a cohort of children whose previous viral infection histories were well documented. These samples were key to the research, because prior dengue virus infections can cross-react and confound many current Zika antibody-based assays; having a thoroughly analyzed pool of patient samples helped the research team characterize and avoid this cross-reactivity.

"These results support that the antibody-based assay that we have developed is highly effective in detecting both recent and past Zika virus infections and in discriminating Zika from other flavivirus infections," said Davide Corti, senior vice president and chief scientific officer of Humabs BioMed. "This novel assay has the potential to become an effective, simple and low-cost solution for Zika surveillance programs, prevalence studies and clinical intervention trials in flavivirus-endemic areas."

The assay is cost effective and easy to use, the researchers say, and additional studies are ongoing to further simplify the assay protocol.

###

Media Contact

Eva Harris
[email protected]
@UCBerkeleyNews

Home

http://news.berkeley.edu/2017/07/18/new-test-distinguishes-zika-from-similar-viral-infections/

Share12Tweet7Share2ShareShareShare1

Related Posts

Culturally Tailored Tools for Early Eating Disorder Detection

September 2, 2025

Evaluating Acupuncture Guidelines for Chronic Pain Relief

September 2, 2025

Targeting Tuberculosis: New Coumarin Derivatives Discovered

September 2, 2025

PRMT5 Overexpression Worsens Heart Hypertrophy and Failure

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Culturally Tailored Tools for Early Eating Disorder Detection

Assessing Clonal Fidelity in Pterocarpus Marsupium Plantlets

MRI Radiomics and Tumor Microenvironment in Cervical Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.