• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cell Biology

New Technology Reveals Secrets of Cellular Memory

Bioengineer by Bioengineer
February 26, 2014
in Cell Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cells in our body are constantly dividing to maintain our body functions. At each division, our DNA code and a whole machinery of supporting components has to be faithfully duplicated to maintain the cell’s memory of its own identity.

New Technology Reveals Secrets of Cellular Memory

Researchers at BRIC, University of Copenhagen, have developed a new technology that has revealed the dynamic events of this duplication process and the secrets of cellular memory. The results are published in Nature Cell Biology

In 2009, two women at BRIC, University of Copenhagen joined forces to develop a new technology that could elucidate the mystery behind cellular memory. Today, they are celebrating their first big discovery using this technology.

“Our technology can isolate the small molecular building blocks that bind to our DNA strand and organize it into a stringent architecture. Importantly, our technology can follow the dynamic duplication processes in our cells and can therefore reveal the life cycle of these DNA-complexes”, says postdoc Constance Alabert who has been leading the laboratory work.

The molecular building blocks that our DNA is wrapped around are called histones and together, the DNA strand and the histones form a stringent structure called chromatin. When our cells divide during development and throughout life to maintain our body functions, the DNA code has to be faithfully duplicated and so do the chromatin and its architecture.

Chromatin contains crucial information that tells our genes when to be active and when to be silent. For example, information stored in the chromatin silence liver specific genes in heart cells and vice versa. Therefore, the entire chromatin structure has to be duplicated at each cell division to maintain a cell’s memory of its own identity.
New molecules stabilize cellular memory

It is no longer debated that the chromatin structure is crucial to maintain cell identity, but the how remains. As only hypothesis driven approaches has been available to study the dynamic event of chromatin duplication, only few molecular factors have been linked to the process.

“With our new technology, we have identified 100 new molecular components that appear to be involved in the tightly regulated process of chromatin duplication and thereby maintenance of cell memory. Thus, we provide a robust technology and the first comprehensive resource to address fundamental questions regarding maintenance of cell identity”, says associate professor Anja Groth, who is heading the laboratory.

Understanding the fundamental principles of how chromatin is faithfully duplicated is essential to understand how our organism is developed and maintained, and also how diseases such as cancer arise. If cells lose their chromatin memory, they can potentially develop into cancer cells and form tumours. Such a loss of what is also called ‘epigenetic’ memory is now known to be involved in almost all cancer types. The next step for the researchers will be to decipher the mode of action of the 100 new chromatin factors.

Story Source:

The above story is based on materials provided by University of Copenhagen.

Share13Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Amino acid recycling in cells: Autophagy helps cells adapt to changing conditions

December 10, 2020
IMAGE

Ferrets, cats and civets most susceptible to coronavirus infection after humans

December 10, 2020

Reductive stress in neuroblastoma cells aggregates protein and impairs neurogenesis

December 8, 2020

Deep Longevity publishes an epigenetic aging clock of unprecedented accuracy

December 8, 2020
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    192 shares
    Share 77 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Models for Urothelial Neoplasm Classification Validated

Rotavirus RNA in Wastewater Reflects US Infection, Vaccination

Exploring N-Succinyl Chitosan Gel: Synthesis and Safety

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.