• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cell Biology

New Technology Reveals Secrets of Cellular Memory

Bioengineer by Bioengineer
February 26, 2014
in Cell Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cells in our body are constantly dividing to maintain our body functions. At each division, our DNA code and a whole machinery of supporting components has to be faithfully duplicated to maintain the cell’s memory of its own identity.

New Technology Reveals Secrets of Cellular Memory

Researchers at BRIC, University of Copenhagen, have developed a new technology that has revealed the dynamic events of this duplication process and the secrets of cellular memory. The results are published in Nature Cell Biology

In 2009, two women at BRIC, University of Copenhagen joined forces to develop a new technology that could elucidate the mystery behind cellular memory. Today, they are celebrating their first big discovery using this technology.

“Our technology can isolate the small molecular building blocks that bind to our DNA strand and organize it into a stringent architecture. Importantly, our technology can follow the dynamic duplication processes in our cells and can therefore reveal the life cycle of these DNA-complexes”, says postdoc Constance Alabert who has been leading the laboratory work.

The molecular building blocks that our DNA is wrapped around are called histones and together, the DNA strand and the histones form a stringent structure called chromatin. When our cells divide during development and throughout life to maintain our body functions, the DNA code has to be faithfully duplicated and so do the chromatin and its architecture.

Chromatin contains crucial information that tells our genes when to be active and when to be silent. For example, information stored in the chromatin silence liver specific genes in heart cells and vice versa. Therefore, the entire chromatin structure has to be duplicated at each cell division to maintain a cell’s memory of its own identity.
New molecules stabilize cellular memory

It is no longer debated that the chromatin structure is crucial to maintain cell identity, but the how remains. As only hypothesis driven approaches has been available to study the dynamic event of chromatin duplication, only few molecular factors have been linked to the process.

“With our new technology, we have identified 100 new molecular components that appear to be involved in the tightly regulated process of chromatin duplication and thereby maintenance of cell memory. Thus, we provide a robust technology and the first comprehensive resource to address fundamental questions regarding maintenance of cell identity”, says associate professor Anja Groth, who is heading the laboratory.

Understanding the fundamental principles of how chromatin is faithfully duplicated is essential to understand how our organism is developed and maintained, and also how diseases such as cancer arise. If cells lose their chromatin memory, they can potentially develop into cancer cells and form tumours. Such a loss of what is also called ‘epigenetic’ memory is now known to be involved in almost all cancer types. The next step for the researchers will be to decipher the mode of action of the 100 new chromatin factors.

Story Source:

The above story is based on materials provided by University of Copenhagen.

Share13Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Amino acid recycling in cells: Autophagy helps cells adapt to changing conditions

December 10, 2020
IMAGE

Ferrets, cats and civets most susceptible to coronavirus infection after humans

December 10, 2020

Reductive stress in neuroblastoma cells aggregates protein and impairs neurogenesis

December 8, 2020

Deep Longevity publishes an epigenetic aging clock of unprecedented accuracy

December 8, 2020
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    40 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Morphology and Location on Aneurysms

Unraveling EMT’s Role in Colorectal Cancer Spread

Gut γδ T17 Cells Drive Brain Inflammation via STING

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.