• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New technology offers pathways to finding treatments for kidney disease

Bioengineer by Bioengineer
August 31, 2022
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Chronic kidney disease and eventual kidney failure are incurable diseases that affect 13% of the U.S. population, particularly those with high blood pressure and diabetes. These diseases degrade the “podocyte” cells of the kidney that maintain the body’s blood filtration system, eventually sending patients to dialysis.

Podocyte

Credit: Suleiman lab

Chronic kidney disease and eventual kidney failure are incurable diseases that affect 13% of the U.S. population, particularly those with high blood pressure and diabetes. These diseases degrade the “podocyte” cells of the kidney that maintain the body’s blood filtration system, eventually sending patients to dialysis.

The search for effective treatments has been hampered because these highly structured cells cannot be cultured outside of the body and because immortalized cell lines are not true to their structure. New research from Washington University’s McKelvey School of Engineering and the School of Medicine aims to overcome this critical barrier.

The discovery, published Aug. 31 in Science Advances, is enabled by a new hydrogel system that preserves the biochemistry and mechanical environments of cultured podocyte cells. With this system, podocytes taken from isolated glomeruli, the filtering units of the kidney, can be cultured on patterns of the proteins that would be in their vicinity in healthy and diseased kidneys. The cells rapidly adopt new shapes and express new protein structures that are associated with injury, enabling researchers to identify new ways to possibly control the mechanisms that these cells use to heal themselves.

“We now have a window into the cytoskeletal dynamics that underlie shape changes and cell loss in injury and disease,” said Hani Y. Suleiman, MD, PhD, assistant professor of medicine in the Division of Nephrology in the Department of Medicine at the School of Medicine and one of three senior authors of the study. “Our studies reveal the structure and function of wound-healing protein complexes that might serve as drug targets.”Shumeng Jiang, a doctoral student in mechanical engineering & materials science, was first author in collaboration with the labs of senior authors Jeffrey Miner, the Eduardo and Judith Slatopolsky Professor of Medicine in Nephrology in the School of Medicine, and Guy Genin, the Harold and Kathleen Faught Professor of Mechanical Engineering in McKelvey Engineering.

Podocytes are unique cells with a hierarchical structure that includes almost octopus-like tentacles that form the structure for the kidney’s filtering units. Diseases that affect podocytes, such as diabetic nephropathy, disrupt these structures and lead to kidney failure that requires dialysis or transplantation.

“We have never before been able to see how these structures respond to stresses in real time,” Miner said. “The immortalized podocyte cell lines that we and others use do not develop these structures, and watching them inside a mouse is difficult. This new approach allows us to determine how mouse and human podocytes taken directly from kidneys behave in the laboratory, where they can be subjected to endless experimental conditions.”

“An exciting new angle is the ability to study and manipulate the mechanobiological aspects of cell responses to disease,” said Genin, who co-directs the National Science Foundation Science and Technology Center for Engineering Mechanobiology. “We can now quantify how changes to the kidney associated with diabetes and elevated blood sugar affect the mechanical function of podocytes and their ability to recover.”

Washington University has submitted a patent application on the technology in cooperation with the university’s Office of Technology Management, and the team hopes to enable a range of research and eventually therapies using the system. Suleiman said he believes this technology has potential to transform development of therapeutics.

“Now that we can perform tests on human cells that come from diseased kidneys, we can rapidly screen chemical treatments that affect protein dynamics and mechanobiology and start to step toward treatments for a whole range of currently incurable diseases,” Suleiman said.



Journal

Science Advances

DOI

10.1126/sciadv.abn6027

Method of Research

Experimental study

Subject of Research

Animals

Article Title

An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures

Article Publication Date

31-Aug-2022

COI Statement

S. Ji., C. Q., G.M.G., J.H.M., and H.Y.S. are inventors on a patent application related to the techniques described in this paper. The authors declare that they have no other competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Al–Salen Catalyst Powers Enantioselective Photocyclization

Al–Salen Catalyst Powers Enantioselective Photocyclization

August 9, 2025
Bacterial Enzyme Powers ATP-Driven Protein C-Terminus Modification

Bacterial Enzyme Powers ATP-Driven Protein C-Terminus Modification

August 9, 2025

Machine-Learned Model Maps Protein Landscapes Efficiently

August 9, 2025

High-Definition Simulations Reveal New Class of Protein Misfolding

August 8, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    138 shares
    Share 55 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    55 shares
    Share 22 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neuroprosthetics Revolutionize Gut Motility and Metabolism

Corticosterone and 17OH Progesterone in Preterm Infants

Multivalent mRNA Vaccine Protects Mice from Monkeypox

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.