• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New technique offers faster, safer way to optimize industrial chemical reactions

Bioengineer by Bioengineer
July 26, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Milad Abolhasani

Researchers have developed a flow-based high-throughput screening technology that offers a faster, safer and less expensive means of identifying optimum conditions for performing high-pressure/high-temperature catalytic chemical reactions. The technique focuses on hydroformylation reactions, which are used to create a variety of commercial products.

"Hydroformylation reactions are industrial processes that are used to make everything from plasticizers to detergents," says Milad Abolhasani, corresponding author of a paper on the work and an assistant professor of chemical and biomolecular engineering at North Carolina State University. "The testing and analysis process for evaluating a single set of conditions using conventional techniques normally takes days. We can now do it in about 30 minutes."

"Eastman uses the homogenous hydroformylation process to make secondary materials included in many products that enhance our quality of life in a material way, such as paints, pharmaceuticals and inks," says Dawn Mason, the external innovation manager at Eastman Chemical Company. "Being able to provide technological improvements in a safer and more expeditious manner than previously available is what makes our partnership with NC State successful."

The new technique uses extremely small samples – on the order of 11 microliters, rather than the milliliters used in conventional techniques. The new technique also integrates reagent preparation, reaction processes and analysis into a single sequence. An explanatory video regarding the work is available at https://www.youtube.com/watch?v=biyVA7eaL2Q.

"Most optimization processes involve multiple steps that are conducted at different work stations," Abolhasani says. "That's one reason they take so long. By integrating these steps into a single, continuous sequence, we've made the process significantly more efficient."

The high-throughput flow chemistry technique and the smaller sample size also expedite the speed of the reaction. But speed isn't the only advantage – the new technique is also safer. That's because these reactions have to be conducted under high pressures, and at high temperatures, using toxic and flammable gases.

"Our technique minimizes human interaction with these gases, since most of the work is done by robots," Abolhasani says. "Also, we use only 60 microliters of these gases, where conventional techniques use a few milliliters or more – that's a difference of at least two orders of magnitude, and that means our process is safer."

The relatively small sample sizes also save money. The catalysts and ligands used in the reactions are expensive. By using smaller samples, the process requires less amount of expensive ligands and catalyst material, reducing the relevant expense by two to three orders of magnitude.

"Ultimately, developing a more efficient technique for these reactions is important because it expedites R&D, allowing researchers to both improve manufacturing processes and to accelerate industry's ability to identify new ligands that have commercial applications," Abolhasani says.

###

The paper, "Flow Chemistry-Enabled Studies of Rhodium-Catalyzed Hydroformylation Reactions," is published in the Royal Society of Chemistry journal Chemical Communications. First author on the paper is Cheng Zhu, a postdoctoral researcher at NC State. Co-authors include Keshav Raghuvanshi, a postdoc at NC State; Connor Coley of MIT; and Dawn Mason, Jody Rodgers and Mesfin Janka of Eastman Chemical Company. Eastman Chemical Company funded the research.

Media Contact

Matt Shipman
[email protected]
919-515-6386
@NCStateNews

Why Not Us?

Original Source

https://news.ncsu.edu/2018/07/faster-safer-optimize-chemical/ http://dx.doi.org/10.1039/C8CC04650F

Share12Tweet7Share2ShareShareShare1

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

Revealing Tendon Changes from Rotator Cuff Tears

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.