• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

New technique can detect impurities in ground beef within minutes

Bioengineer.org by Bioengineer.org
January 21, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Paul Joseph/UBC

Researchers at the University of British Columbia have found a better way to identify unwanted animal products in ground beef.

Food science students led by professor Xiaonan Lu used a laser-equipped spectrometer and statistical analysis to determine with 99 per cent accuracy whether ground beef samples included other animal parts. They were able to say with 80 per cent accuracy which animal parts were used, and in what concentration.

Their new method can accomplish all of this in less than five minutes, which makes it a potentially transformative food inspection tool for government and industry.

"By using this innovative technique, the detection of food fraud can be simpler, faster and easier," said the study's lead author Yaxi Hu, a PhD candidate in UBC's faculty of land and food systems.

Food fraud is the intentional misrepresentation of food products for economic gain. When producers hold an excess supply of meat or byproducts for which there is relatively little market demand, the potential exists for unscrupulous operators to try to pass those products off as something else. In the past five years, high-profile scandals in the U.K., Ireland, and Russia have seen lamb, chicken and even rat meat substituted for higher-quality meat products.

DNA testing has proven efficient and accurate in identifying foreign species in meat products, but what DNA testing cannot do is identify offal–hearts, livers, kidneys and stomachs–mixed in with meat of the same species.

To establish their method, the UBC researchers aimed a spectrometer at meat samples they had prepared by grinding together beef and offal from local supermarkets at various concentrations. Because animal products all have different chemical compositions, their molecules absorb and scatter energy from the spectrometer's laser in different ways. The spectrometer captures these signals–or spectra–to produce an "image" of each substance. These spectral images can serve as a library for comparison with other samples.

Whether a meat sample is authentic or adulterated with offal can be determined by comparing its spectral image with the pre-established library, to see if there's a match.

The method improves on existing techniques that are more complicated and time-consuming. For example, a technique known as liquid chromatography works well, but it requires meat samples to be liquefied with solvents before testing, which can take more than an hour.

"The instrumentation for this technique is not that complex," Hu said. "So, if government or industry wants to do some rapid screening, they don't need to find highly trained personnel to conduct the experiment."

All they would need is a spectrometer and user-friendly software that connects to a robust library of spectral images. As more types of meat and offal were analyzed and their results stored, the technique would become even more accurate.

The researchers' ultimate goal is to create an affordable smart device that could be used by consumers at home for the authentication of different food products, much like the pregnancy-test strip.

###

The study was published Nov. 9 in Scientific Reports. Hu's co-authors were electrical and computer engineering post-doctoral fellow Liang Zou; food science undergraduate student Xiaolin Huang; and corresponding author Xiaonan Lu, a 2017 UBC Peter Wall Scholar and associate professor in the faculty of land and food systems. The research is supported by the Natural Sciences and Engineering Research Council of Canada and the Peter Wall Institute for Advanced Studies.

Media Contact

Erik Rolfsen
[email protected]
604-822-2644
@UBCnews

http://www.ubc.ca

Original Source

https://news.ubc.ca/2017/11/24/new-technique-can-detect-impurities-in-ground-beef-within-minutes/ http://dx.doi.org/10.1038/s41598-017-15389-3

Share12Tweet7Share2ShareShareShare1

Related Posts

Preoperative BMI Influences Outcomes in Infective Endocarditis

September 13, 2025

Advancing Liver Transplantation for Cancer with Genomics

September 13, 2025

Exploring Water Absorption in Footballs: Leather vs. Synthetic

September 13, 2025

Grape and Olive Waste Transformed Into Asphalt Antioxidants

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preoperative BMI Influences Outcomes in Infective Endocarditis

Advancing Liver Transplantation for Cancer with Genomics

Exploring Water Absorption in Footballs: Leather vs. Synthetic

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.