• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New superlattice material for future energy efficient devices

Bioengineer by Bioengineer
August 17, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Stony Brook University

STONY BROOK, NY, August 17, 2020 – A team of international physicists including Jennifer Cano, PhD, of Stony Brook University, has created a new material layered by two structures, forming a superlattice, that at a high temperature is a super-efficient insulator conducting current without dissipation and lost energy. The finding, detailed in a paper published in Nature Physics, could be the basis of research leading to new, better energy efficient electrical conductors.

The material is created and developed in a laboratory chamber. Over time atoms attach to it and the material appears to grow – similar to the way rock candy is formed. Surprisingly, it forms a novel ordered superlattice, which the researchers test for quantized electrical transport.

The research centers around the Quantum Anomalous Hall Effect (QAHE), which describes an insulator that conducts dissipationless current in discrete channels on its surfaces. Because QAHE current does not lose energy as it travels, it is similar to a superconducting current and has the potential if industrialized to improve energy-efficient technologies.

“The main advance of this work is a higher temperature QAHE in a superlattice, and we show that this superlattice is highly tunable through electron irradiation and thermal vacancy distribution, thus presenting a tunable and more robust platform for the QAHE,” says Cano, Assistant Professor in the Department of Physics and Astronomy in the College of Arts and Sciences at Stony Brook University and also an Affiliate Associate Research Scientist at the Flatiron Institute’s Center for Computational Quantum Physics.

Cano and colleagues say they can advance this platform to other topological magnets. The ultimate goal would be to help transform future quantum electronics with the material.

The collaborative research is led by City College of New York under the direction of Lia Krusin-Elbaum, PhD. The research is supported in part by the National Science Foundation (grant numbers DMR-1420634 and HRD-1547830).

###

Media Contact
Greg Filiano
[email protected]

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Optimizing Polyhydroxybutyrate from Waste Oil: Economic Insights

Optimizing Polyhydroxybutyrate from Waste Oil: Economic Insights

December 19, 2025

Connecting Individual and Community Health Insights: A Study

December 19, 2025

RECQL4 Mutations Impact Helicase Function and Chemotherapy Response

December 19, 2025

Assessing ICU Nurses’ Nutritional Care Skills in China

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Polyhydroxybutyrate from Waste Oil: Economic Insights

Connecting Individual and Community Health Insights: A Study

RECQL4 Mutations Impact Helicase Function and Chemotherapy Response

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.