• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New study unveils vertically oriented 2D ruddlesden–popper phase perovskite passivation layer for efficient and stable inverted PSCS

Bioengineer by Bioengineer
October 20, 2022
in Chemistry
Reading Time: 2 mins read
0
Professor Hyesung Park and his research team
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team, led by Professor Hyesung Park in the Department of Materials Science and Engineering at UNIST has succeeded in manufacturing potentially high efficiency, stable, and scalable perovskite solar cells (PSCs) via vacuum deposition apparatus, a method of fabricating organic light-emitting display devices (OLEDs). Such method is also advantageous for the mass production of batteries, which is expected to further accelerate the commercialization of the PSCs, according to the research team.

Professor Hyesung Park and his research team

Credit: UNIST

A research team, led by Professor Hyesung Park in the Department of Materials Science and Engineering at UNIST has succeeded in manufacturing potentially high efficiency, stable, and scalable perovskite solar cells (PSCs) via vacuum deposition apparatus, a method of fabricating organic light-emitting display devices (OLEDs). Such method is also advantageous for the mass production of batteries, which is expected to further accelerate the commercialization of the PSCs, according to the research team.

In this study, the research team demonstrated highly efficient and stable PSCs with a vacuum-processed Ruddlesden–Popper (RP) phase perovskite passivation layer. By controlling the deposition rate of the RP phase perovskite, which directly influenced its crystallographic orientation, the research team successfully obtained a highly ordered 2D perovskite passivation layer. The 2D perovskite layer passivated the bulk perovskite defects and promoted the charge transport efficiency in the PSC. As a result, the BABr (V) inverted PSC has achieved a champion PCE of 21.4% in the resulting device with outstanding humidity and thermal stability. This number is by far the highest ever achieved for PSCs formed by vacuum deposition. In addition, it showed enhanced long-term operational stability, such as maintaining 62% of its initial PCE (average) when operated for for 1,000 hours under 60–70% relative humidity at room temperature, even without device encapsulation.

“Our findings provide a new perspective toward further improving the performance of PSCs by mitigating nonradiative recombination pathways in perovskites,” noted the research team.

The findings of this research were made available in June 2022, ahead of its publication in the journal, Energy & Environmental Science (ESS, IF = 39.714). This study has been supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (MSIT).

Journal Reference
Yunseong Choi, Donghwan Koo, Gyujeong Jeong, et al., “A vertically oriented two-dimensional Ruddlesden–Popper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells,” Energy Environ. Sci., (2022)



Journal

Energy & Environmental Science

Article Title

A vertically oriented two-dimensional Ruddlesden–Popper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells†

Article Publication Date

1-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Complete Synthesis of Hemiketal Tetrodotoxin Achieved

Complete Synthesis of Hemiketal Tetrodotoxin Achieved

September 19, 2025
Early Universe Galaxies Unveil Hidden Dark Matter Maps

Early Universe Galaxies Unveil Hidden Dark Matter Maps

September 18, 2025

Chicago Quantum Exchange-Led Coalition Reaches Final Stage in NSF Engine Competition

September 18, 2025

“First-ever observation of quantum squeezing in a nanoscale particle”

September 18, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeting Lipid Metabolism to Enhance Antitumor Immunity

Triple Wavefront Modulation Enables Advanced Multi-Depth XR Vision

Uncovering Gaps in Rehab for Hospitalized Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.