• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New study unravels protection mechanism in bacteria

Bioengineer by Bioengineer
July 3, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at the University of Birmingham have shed fresh light on the mechanism used by certain types of bacteria to protect themselves against attack.

Gram negative bacteria can cause diseases such as pneumonia, cholera, typhoid fever and E. coli infections, as well as many hospital acquired infections. They are increasingly resistant to antibiotics – and this is partly because of the way they are built.

Gram negative bacteria are surrounded by a double membrane that forms a highly effective protective barrier and makes the cell far more resilient to antibiotics. The outer of these two membranes is composed of two types of molecule, phospholipid and lipopolysaccharide (LPS) in a unique asymmetric architecture, with LPS on the outside of the membrane and phospholipid on the inside. It is this architecture that makes gram-negative bacteria particularly resistant to antibiotics.

Understanding how these bacteria make this outer membrane could lead to the identification of new ways to combat bacterial infections, as this membrane is essential for bacterial survival.

Scientists at the University of Birmingham have recently made a step forward in understanding this process by identifying the first mechanism involved in the movement of phospholipid molecules towards this membrane. Their results are published in Nature Microbiology.

Using biophysical techniques including x-ray crystallography and nuclear magnetic resonance, the Birmingham team were able to monitor the movement of phospholipids from the inner membrane towards the outer membrane directly through a series of proteins that form a pathway known as the Mla pathway. This pathway has previously been shown to be involved in disease but its exact function was not known. These results provide the first evidence of a protein machinery involved in these transport processes and opens up the possibility of targeting it for antibiotic development.

Lead author Dr Tim Knowles says: “We’ve known for many years that these bacteria contain two membranes which help them survive in harsher conditions, and provide enhanced protection against attack by antimicrobial agents. Understanding more about how these membranes are formed and maintained could be a key part of research to develop new antibiotics.”

###

The work was funded by the Biotechnology and Biosciences Research Council and the Wellcome Trust, and carried out in partnership with the ISIS Pulsed Neutron and Muon Source situated at the Rutherford Appleton Laboratory.

Notes to editor:

  • The University of Birmingham is ranked amongst the world’s top 100 institutions. Its work brings people from across the world to Birmingham, including researchers, teachers and more than 6,500 international students from over 150 countries.
  • Hughes et al (2019). ‘Evidence for phospholipid export from the bacterial inner membrane by the 1 Mla ABC transport system.’ Nature Microbiology. DOI: 10.1038/s41564-019-0481-y

Media Contact
Beck Lockwood
[email protected]
http://dx.doi.org/10.1038/s41564-019-0481-y

Tags: BacteriologyBiologyCell BiologyMicrobiologyMolecular Biology
Share12Tweet7Share2ShareShareShare1

Related Posts

Gene Variations Enhance Beef Cattle Efficiency and Immunity

Gene Variations Enhance Beef Cattle Efficiency and Immunity

December 21, 2025
blank

GBLUP vs. WGBLUP: Genomic Selection in Beef Cattle

December 21, 2025

Anopheles gambiae Habitat and Public Health in Osun

December 21, 2025

Genetic Insights into Aedes aegypti Expansion in California

December 21, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fruquintinib and Sintilimab Treat Advanced Endometrial Cancer

Assessing Tobacco Genotypes’ Tolerance to Egyptian Broomrape

Gene Variations Enhance Beef Cattle Efficiency and Immunity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.