• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New study uncovers the interaction of calcium channels

Bioengineer by Bioengineer
October 24, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Daegu Gyeongbuk Institute of Science and Technology (DGIST)

A research team led by DGIST Professor Byung-Chang Suh at the Department of Brain and Cognitive Sciences has observed in real-time and identified the interaction of calcium channel complexes existing in nerve and heart cells inside cells.

Calcium channel complexes consist of alpha 1(α1), beta (β), and alpha 2 gamma (α2δ) subunits, which play important roles for calcium channels to control the inflow of calcium ion inside cells. Despite many scientists' efforts into identifying and analyzing the interactions of complexes, there has been no significant research achievements so far due to difficulties in verifying them in real-time.

Professor Suh's research team first modified and applied the 'Rapamycin-inducible FKBP-FRB dimerization technique', inducing calcium channel β subunits to move to organelle, a specialized subunit contained inside a cell membrane, mitochondria, or an endoplasmic reticulum, to create an environment that can be observed by eyes in real-time. Using the patch-clamp, the team could identify not only the interactions among various subunits inside calcium channels but also among subunits which could not been researched before.

β subunit is combined stably with α1 subunit if it is expressed by itself inside a calcium channel. However, if more than 2 β subunits of different types exist inside the same channel, β subunits of the existing α1 and β combined subunits are replaced by another single β subunit due to a competition among β subunits, reducing stability. This has been identified by the research team.

This is considered as opening a new horizon in the related research by enabling to observe in real-time the dynamic combination of α1 and β subunits in the calcium channel of a live cell due to the competition of subunits. In addition, such interaction among subunits mean more precise control of the calcium ion inflow inside cells, showing the importance of the close interaction among subunits.

Furthermore, the researchers also discovered new phenomena caused by subunits' interactions such as a decrease in calcium inflow into a channel caused bye the separation of α1 and β combined subunits, decline in the channel blocking speed, and decreased activity of calcium channels caused by the phosphatide of cell membrane.

Professor Byung-Change Suh said "Since this research was carried out on nerve and heart cells, it is expected to open a path for the development of new treatment on high blood pressure and various brain diseases. The research technique used in this research is also expected to greatly influence the research of various proteins inside cells that have interactions among proteins".

###

This study has been published on the latest issue of a world-renowned international journal, 'Proceedings of the National Academy of Sciences of the United States of America (PNAS)'.

For more information, contact:

Byung-Chang Suh, Associate Professor
Department of Brain and Cognitive Sciences
Daegu Gyeongbuk Institute of Science and Technology (DGIST)
E-mail: [email protected]

Associated Links

Research Paper on Journal of PNAS
http://dx.doi.org/10.1073/pnas.1809762115

Professor's Laboratory of Brain and Cognitive Sciences at DGIST
http://www.suhlab.kr/

Journal Reference

Jun-Hee Yeon, Cheon-Gyu Park, Bertil Hilleb, and Byung-Chang Suh, "Translocatable voltage-gated Ca2+ channel β subunits in α1-β complexes reveal competitive replacement yet no spontaneous dissociation", PNAS, October 2018

Media Contact

Dajung Kim
[email protected]
82-537-851-163

http://www.dgist.ac.kr

Original Source

https://en.dgist.ac.kr/site/dgist_eng/menu/508.do?siteId=dgist_eng&snapshotId=3&pageId=429&cmd=read&contentNo=38086 http://dx.doi.org/10.1073/pnas.1809762115

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.