• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New study shows how organic molecules impact gold nanoparticles

by
July 17, 2024
in Chemistry
Reading Time: 3 mins read
0
Understanding how nanoparticles interact with organic molecules
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study shows how organic molecules greatly influence the redox potential of gold nanoparticles, with differences up to 71 mV. Using experiments and computer simulations, the study highlights the important role of capping agents in controlling the nanoparticles’ electrochemical properties and also identifies how kinetic effects impact these interactions. These findings have practical uses in areas like nanoparticle dispersion, monitoring ligand exchange, and advancements in fields such as catalysis, electronics, and drug delivery, showing the potential for customizing nanoparticle behavior for specific applications.

Understanding how nanoparticles interact with organic molecules

Credit: Din Zelikovich (PhD student), Pavel Savchenko (MSc student) and Hadassah Elgavi Sinai (Senior Researcher).

A new study shows how organic molecules greatly influence the redox potential of gold nanoparticles, with differences up to 71 mV. Using experiments and computer simulations, the study highlights the important role of capping agents in controlling the nanoparticles’ electrochemical properties and also identifies how kinetic effects impact these interactions. These findings have practical uses in areas like nanoparticle dispersion, monitoring ligand exchange, and advancements in fields such as catalysis, electronics, and drug delivery, showing the potential for customizing nanoparticle behavior for specific applications.

 

A recent study led by Prof. Daniel Mandler with Prof. Roi Baer and Dr. Hadassah Elgavi Sinai and a team at Hebrew University, published in the Journal of the American Chemical Society, reveals how organic molecules affect the behavior of tiny gold particles absorbed on surfaces. Their research deepens our understanding of how these nanoparticles absorbed on surfaces interact with their surroundings, offering important insights for various uses. The research was conducted jointly by PhD student Din Zelikovich, who carried out very careful experiments and MSc student Pavel Savchenko, who conducted the theoretical calculations.

The study found that different molecules, like 2- and 4-mercaptobenzoic acid, can cause gold nanoparticles to have significantly different electrical properties, with differences up to 71 Mv (millivolts). This highlights how crucial these molecules are in determining how nanoparticles behave.

Using advanced computer simulations and experiments, the collaboration between the experimental and theoretical teams showed that some molecules stick to gold surfaces in predictable ways, matching what they saw experimentally. However, they also found that the kinetics, namely, the rate the nanoparticles are oxidized adds more complexity to how they interact.

For instance, they discovered that gold nanoparticles stabilized by 4-mercaptobenzoic acid reacted twice as quickly as those with citrate. This finding, backed by scientific theories, shows just how much the right molecule can change how these nanoparticles act.

Prof. Daniel Mandler emphasized the significance of the research, stating, “Our study demonstrates the profound impact that capping agents have on the redox properties of nanoparticles. This understanding allows us to fine-tune nanoparticle behavior for specific applications, potentially leading to significant impact in fields ranging from catalysis to drug delivery.”

As the scientific community continues to explore the intricate world of nanoparticles, this research contributes valuable knowledge to the field of nanoparticle chemistry. By shedding light on the complex interactions between nanoparticles and their capping agents, this study opens new avenues for designing and optimizing nanoparticles for a wide range of applications, promising exciting developments in nanotechnology in the years to come.



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.4c02524

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

The Effect of the Capping Agents of Nanoparticles on Their Redox Potential

Article Publication Date

3-Jul-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Photocatalytic RNA Profiling Enables Multi-Omics Analysis

September 16, 2025
blank

Rare Einstein Cross Unveiled: Astronomers Detect Fifth Image Uncovering Hidden Dark Matter

September 16, 2025

“Shaking Up Electronics: How ‘Wiggling’ Atoms Could Shrink Devices and Boost Efficiency”

September 16, 2025

Rethinking the Cosmological Constant

September 16, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough Room-Temperature Terahertz Device Paves the Way for 6G Networks

Lymph Nodes Identified as Crucial Drivers of Successful Cancer Immunotherapy

Sure! Here’s a rewritten version of the headline for a science magazine post: “Indra’s Internet: Revolutionizing Connectivity with Cutting-Edge Technology” If you’d like it to be more technical or catchy, let me know!

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.