• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, December 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New study shows click chemistry could provide total chemical DNA synthesis

Bioengineer by Bioengineer
February 8, 2014
in Chemistry, Proteomics
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An interdisciplinary study led by Dr Ali Tavassoli, a Reader in chemical biology at the University of Southampton, has shown for the first time that ‘click chemistry’ can be used to assemble DNA that is functional in human cells, which paves the way for a purely chemical method for gene synthesis.

New study shows click chemistry could provide total chemical DNA synthesis

Writing in Angewandte Chemie International Edition Dr Tavassoli’s team and his collaborators, Dr Jeremy Blaydes and Professor Tom Brown, show that human cells can still read through strands of DNA correctly despite being stitched together using a linker not found in nature.

The artificially linked DNA was created by joining oligonucleotides using click chemistry – chemistry tailored to mimic nature which generates substances quickly and reliably by joining small units together.

This click technique is highly efficient and boasts a number of advantages over the usual approaches to assembling DNA strands in the lab using a combination of DNA synthesis, PCR amplification and enzymatic ligation.

“As chemists we always sought to synthesise long strands of DNA but have been limited by our assumption that the phosphodiester bond is necessary for DNA to function in cells,” says Dr Tavassoli. The DNA backbone is made up of pentose sugars and phosphate groups that stitch the nucleotides together using phosphodiester bonds. This backbone acts as the scaffold for the four bases that make up the genetic code.

The click DNA approach relies on a rapid and efficient stitching together of modified DNA strands using the copper-catalysed alkyne-azide cycloaddition reaction. Click-linking DNA leaves behind a triazole group in the backbone and it was feared that cellular machinery would be unable to read these unnaturally joined DNA strands. The new study demonstrated error-free transcription in human cells, the first example of a non-natural DNA linker working correctly in eukaryotic cells.

“This is important because it shows that we don’t have to stick to the phosphodiester backbone of the DNA at the site of DNA ligation,” Dr Tavassoli explains. “This suggests that we can replace the enzymatic methods for DNA assembly and DNA ligation with highly efficient chemical reactions.”

“This is a mind blowing advance that demonstrates chemistry’s power to manipulate nature’s nature,” comments Nobel laureate Barry Sharpless at the Scripps Research Institute, US, who first described the click chemistry process. “I only dreamed I’d get to see click chemistry do this in my lifetime. It is a marvellous achievement.”

Story Source:

The above story is based on materials provided by University of Southampton.

Share13Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sex Differences in Liver Metabolism and Disease

Retraction: Study on Lead-Free Perovskite Properties

AI Software Detects Atrial Fibrillation in ECG Testing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.