• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New study points to potential strategy to reduce fatigue after COVID-19 vaccination

Bioengineer by Bioengineer
May 31, 2022
in Health
Reading Time: 3 mins read
0
New study points to potential strategy to reduce fatigue after COVID-19 vaccination
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Despite their strong effectiveness against SARS-CoV-2, mRNA-based COVID-19 vaccines are associated with adverse post-vaccination effects, such as fatigue; how can this be avoided? In a new study publishing May 31st in the open-access journal PLOS Biology, Ayesa Syenina of the Duke–NUS Medical School in Singapore and colleagues report that a new analysis of blood samples from people vaccinated for COVID-19 has identified distinct molecular characteristics linked to an increased likelihood of post-vaccination fatigue. Additionally, experiments in mice suggest that switching the vaccine injection strategy could potentially ease such adverse effects.

New study points to potential strategy to reduce fatigue after COVID-19 vaccination

Credit: Christine Tham (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/)

Despite their strong effectiveness against SARS-CoV-2, mRNA-based COVID-19 vaccines are associated with adverse post-vaccination effects, such as fatigue; how can this be avoided? In a new study publishing May 31st in the open-access journal PLOS Biology, Ayesa Syenina of the Duke–NUS Medical School in Singapore and colleagues report that a new analysis of blood samples from people vaccinated for COVID-19 has identified distinct molecular characteristics linked to an increased likelihood of post-vaccination fatigue. Additionally, experiments in mice suggest that switching the vaccine injection strategy could potentially ease such adverse effects.

Adverse post-vaccination effects may influence people’s willingness to get vaccinated or receive a booster dose, hampering efforts to reduce the spread and severity of COVID-19. However, the molecular underpinnings of adverse post-vaccination effects have been unclear.

To improve understanding, Syenina and colleagues analyzed blood samples from 175 healthcare workers who received BNT162b2, the Pfizer-BioNTech COVID-19 vaccine. Specifically, they used the blood samples to analyze a snapshot of each participant’s gene expression, or which genes are turned on or off.

This analysis revealed that people who experienced moderately severe fatigue after vaccination were more likely to have higher baseline expression of genes related to the activity of T cells and natural killer cells—two key cell types in the human immune system.

The researchers also tested two different vaccination injection strategies in mice. Some mice received BNT162b2 through intramuscular injection, the current method used for human patients, in which the vaccine is injected into the muscles. Other mice received a subcutaneous injection, in which the vaccine is injected into tissue just under the skin.

After vaccination, compared to mice that received intramuscular vaccination, mice that received subcutaneous vaccination showed immune-system responses that are in line with a lower likelihood of adverse effects such as fatigue. However, subcutaneous injection did not appear to compromise the protective effects of vaccination.

Further research will be needed to build on these findings and explore their clinical significance. Still, they boost understanding of post-vaccination fatigue and offer a potential strategy to reduce its likelihood.

Coauthor Eng Eong Ooi adds, “This study provides a first insight into the molecular basis of a side effect that many have experienced following mRNA vaccination. We hope that this finding would spur more studies to fully understand the underpinning mechanisms behind vaccine-associated side effects and collectively contribute to developing even more tolerable vaccines.”

#####

In your coverage, please use this URL to provide access to the freely available paper in PLOS Biology:   http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001643

Citation: Syenina A, Gan ES, Toh JZN, de Alwis R, Lin LZ, Tham CYL, et al. (2022) Adverse effects following anti–COVID-19 vaccination with mRNA-based BNT162b2 are alleviated by altering the route of administration and correlate with baseline enrichment of T and NK cell genes. PLoS Biol 20(5): e3001643. https://doi.org/10.1371/journal.pbio.3001643

 

Author Countries: Singapore

 

Funding: This study was supported by the National Medical Research Council (NMRC) Open Fund-Large Collaborative Grant (OFLCG19May-0034) and Senior Clinician-Scientist Award (MOH-000135-00) to E.E.O, and the Open Fund-Young Investigator Research Grant (MOH-OFIRG18nov-0004) to R.D.A. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3001643

Method of Research

Observational study

Subject of Research

Cells

COI Statement

Competing interests: The authors have declared no competing interests exists.

Share12Tweet8Share2ShareShareShare2

Related Posts

Prematurity: Unveiling Neurodevelopmental and Psychiatric Risks

November 15, 2025

Stress Ball Impact on Surgery Anxiety: A Trial

November 15, 2025

Enhancing Population Health with the BE-FAIR Model

November 15, 2025

Betaine Eases Letrozole-Induced Ovarian Syndrome in Rats

November 15, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prematurity: Unveiling Neurodevelopmental and Psychiatric Risks

Gut Microbiota Changes in Mice Infected by Echinococcus

Stress Ball Impact on Surgery Anxiety: A Trial

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.