• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New study points the way to therapy for rare cancer that targets the young

Bioengineer by Bioengineer
November 21, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Laboratory of Cellular Biophysics at The Rockefeller University

After years of rigorous research, a team of scientists has identified the genetic engine that drives a rare form of liver cancer. The findings offer prime targets for drugs to treat the usually lethal disease, fibrolamellar hepatocellular carcinoma (FL-HCC), which mainly strikes adolescents and young adults.

Sanford Simon, who conducted the research as head of The Rockefeller University's Laboratory of Cellular Biophysics, describes the culprit as a "chimeric gene," a mutation created when two genes fuse together. These genes normally sit far apart from each other, separated by some 400,000 base pairs, the building blocks of DNA that combine to form genes.

The chimeric gene, which Simon's lab first characterized three years ago, has been found in each of the hundreds of FL-HCC patients tested for the mutation.

A disease mechanism revealed

Having confirmed the chimeric gene as a hallmark of the disease, Simon set out to explore if and how it may cause these malignant tumors. He worked with Scott Lowe, a cancer geneticist at the Memorial Sloan Kettering Cancer Center, to develop a mouse model of FL-HCC.

In work published this week in the Proceedings of the National Academy of Sciences, the scientists used CRISPR gene editing, a highly precise tool for manipulating DNA, to generate mice that carry the 400,000 base-pair deletion and produce the chimeric gene. Edward Kastenhuber, a graduate student in Lowe's lab, found that these mice develop liver tumors that mimic the biology of the tumors found in humans with FL-HCC, suggesting that the deletion is in itself sufficient to cause the cancer–other alterations are not necessary for tumors to grow.

However, this experiment left open the question of precisely how the deletion spurs cancer: by eliminating genes that normally would suppress the growth of tumors, or by introducing the chimeric gene. Another experiment, in which mice with the fused gene but no deletion in the genome developed tumors, proved that it's the mutation, not the missing DNA as such, that causes the disease.

With the chimeric gene firmly established as the driver of the disease, and its cellular mechanisms defined, Simon and his team–including Gadi Lalazar, of Rockefeller's Clinical Scholars Program, and graduate student David Requena–are now working to identify potential targets for drugs to treat the disease.

New concepts for therapy

Among these drug targets is a protein produced from the fused gene that belongs to a family of enzymes called kinases. These enzymes are often mutated in cancers. "In fact," Simon explains, "some of the most successful cancer therapies available, including Gleevec, act by targeting specific kinases."

The researchers showed that disruption of the fused gene's kinase activity impaired the formation of tumors in mice–a finding that has strengthened their confidence that agents aimed at targeting this activity or its consequences might be effective against FL-HCC.

The team is also studying the effects of targeting a number of cellular signaling systems that have previously been implicated in other cancers, and that speed tumor growth when they become overactive in FL-HCC patients. And they will be using their new mouse model as a system to test the effectiveness of new therapies prior to initiating clinical trials in patients.

Simon first became interested in FL-HCC nine years ago, when his 12-year-old daughter Elana was diagnosed with the disease. (Now 21, Elana is a senior at Harvard, and a lead author on earlier reports characterizing the genomics of the disease.) He continues to embrace the challenge the cancer presents and attributes the latest breakthroughs to an "incredible perfect storm" of advances in all of the sciences, thanks to decades of public investment in basic research.

"Here's a cancer where, five years ago, we didn't know if it was one disease or many diseases lumped together," Simon adds. "We didn't know if it was inherited or if it was due to a sporadic mutation. And now we know exactly what the driver is and how it works, and we can start designing therapeutics."

###

Media Contact

Katherine Fenz
[email protected]
212-327-7913
@rockefelleruniv

http://www.rockefeller.edu

Related Journal Article

http://dx.doi.org/10.1073/pnas.1716483114

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Efficient Matrix Solving with Resistive RAM Technology

October 13, 2025

Chemical Dimerization Inhibits GSDMD-Driven Pyroptosis

October 13, 2025

Dana-Farber Leads Phase 3 Trials for Breast, Lung, and Bladder Cancer Unveiled at ESMO Congress 2025

October 13, 2025

Psychedelic 5-HT2A Activation Changes Brain Blood Flow

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1230 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Efficient Matrix Solving with Resistive RAM Technology

Chemical Dimerization Inhibits GSDMD-Driven Pyroptosis

Dana-Farber Leads Phase 3 Trials for Breast, Lung, and Bladder Cancer Unveiled at ESMO Congress 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.