• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New study describes 200 million years of geological evolution

Bioengineer by Bioengineer
December 5, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Giulio Viola, University of Bologna

Tectonic plates, big sections of Earth's crust and blocks underneath them, are constantly moving. The areas where these sections meet and interact are called faults. They appear as scars on the outermost layer of the Earth. A lot is going on along the largest of faults: mountains can grow, volcanoes can erupt, continents can separate and earthquakes happen.

Also more discrete events are constantly happening close to faults: The emission of the greenhouse gas methane from ocean floor commonly occurs in gas hydrate provinces along tectonically active continental margins.

Active methane seepage happening frequently

This is what makes brittle faults particularly alluring for CAGE/NGU researcher Jochen Knies. He is one of the coauthors of a new study in Nature Communications that, for the first time, precisely dates the evolution of a brittle fault from its initial formation to its later reactivation.

Brittle faults may be important because they open up pathways along which methane, released from the reservoirs deep under the Earth's crust, can migrate to shallower depths or even into the ocean itself.

"Active methane leakage from the sea floor happens episodically, and frequently. Some seeps activate annually, others become active on a millennial scale. We need to better identify and characterize timing and duration of these leaks. It is critical for our understanding of the role the natural gas emissions play on global climate." says Jochen Knies, researcher at CAGE/NGU.

The story of the faults is the story of methane release

Methane is a very potent greenhouse gas. The impacts of the industrial and agricultural release of the gas are well known and mapped. But the effects and quantities of the natural release of the gas, especially from the ocean floor, are poorly understood. Recent studies show that this natural release has been heavily underestimated.

The Nature Communications study focuses on brittle faults and fractures onshore in western Norway. Up to now, applications for directly fingerprinting the age of brittle faulting and reactivation – and thus potentially the timing of gas emission through the crust – did not exist.

"We have managed to precisely date several episodes of faulting and reactivation of brittle faults onshore Norway. Our study unravels and dates a complex evolution of the local brittle deformation, which straddles a 200 million year timespan." says Giulio Viola, the lead-author of the study .

The onshore study gives scientists the necessary tools to understand the age of offshore faults, which are important for methane release from gas hydrate provinces.

Improving the models and estimates of methane release

The innovative method behind the study combines a twofold approach: the detailed structural analysis of faults, and the dating of their history by applying potassium/argon dating of the clay mineral illite. The faulting causes deformations in which illite can form, and just a few milligrams of the clay mineral are enough to do this type of dating.

"Testing this toolbox on fault and fracture systems below active sites of methane leakages, would potentially provide an innovative and unique possibility: By constraining the timing of offshore faulting episodes, we may ultimately be able to identify the events of increased methane emission to the ocean and atmosphere. These episodes are not something that is restricted to the past. They are happening now, and will be happening frequently in the future", concludes Knies.

The method and the findings may also improve current models that estimate the amounts of methane released from natural sources.

###

Media Contact

Jochen Knies
[email protected]
@CAGE_COE

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Revolutionizing T Cells: Advancements in Interfacial Engineering

August 28, 2025

New Zenroot™ Formula Eases Stress and Enhances Sleep

August 28, 2025

Mesenchymal Stem Cells: Beneficial or Harmful in AML?

August 28, 2025

Unlocking Wine’s Impact on Corni Fructus: A Research Blueprint

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing T Cells: Advancements in Interfacial Engineering

New Zenroot™ Formula Eases Stress and Enhances Sleep

Mesenchymal Stem Cells: Beneficial or Harmful in AML?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.