• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New study answers old questions about why tropical forests are so ecologically diverse

Bioengineer by Bioengineer
October 15, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Jonathan Dandois and Helene Muller-Landau/Smithsonian Tropical Research Institute.

PROVIDENCE, R.I. [Brown University] — Working with high-resolution satellite imaging technology, researchers from Brown University and the University of California, Los Angeles have uncovered new clues in an age-old question about why tropical forests are so ecologically diverse.

In studying Handroanthus guayacan,a common tropical tree species, over a 10-year period, they found that the tree population increased mainly in locations where the tree is rare, rather than in locations where it is common.

"There are more tree species living in an area not much larger than a few football fields in Panama than in all of North America north of Mexico combined," said Jim Kellner, first author on the paper and an assistant professor of ecology and evolutionary biology at Brown. "How this diversity originated, and why it persists over time is a paradox that has challenged naturalists for more than a century."

Until now.

"The take-home of the study is that there is a 'negative feedback' on population growth," Kellner said, which puts the brakes on population growth in locations where the species is common.

The findings confirm a prediction from the 1970s, which posited that tropical forests are diverse because natural enemies keep populations in check. An enemy could be a seed eater, an herbivore or a pathogen, said Kellner, who is affiliated with the Institute at Brown for Environment and Society.

For example, consider an oak tree and a squirrel. The squirrel eats acorns and prefers to forage where oak trees are abundant. A lone acorn in the middle of a grove of maples is likely to go unnoticed by a squirrel, whereas many acorns in an oak grove will be eaten. If this kind of behavior is widespread in tropical rainforests, it could keep species from becoming too common, Kellner said.

Earlier studies have shown that this negative feedback phenomenon holds true among young trees — seeds, seedlings and saplings — but ecologists hadn't been able to determine whether it influences adult trees, the reproductive portion of populations, he said.

"It takes decades for trees to become reproductive in tropical forests, and the problem is compounded by how rare each species is," Kellner said. "We found that for this species, you would have to search about 250 acres to find one new adult tree every year."

That challenge isn't feasible on foot, but remote sensing can overcome the challenges of observing large areas.

Kellner and co-author Stephen Hubbell, an ecology professor emeritus at UCLA, used high-resolution satellite images to track individuals on Barro Colorado Island, a six-square-mile island in the middle of the Panama Canal, over 10 years. They looked for Handroanthus guayacan, a tropical rainforest tree that produces bright yellow flowers for a few days a year.

"By timing the satellite image acquisition with seasonal flowering, we were able to identify most of the adults for this species on the island," said Kellner.

They found 1,006 adult trees. Starting in 2012 and looking backward over the 10-year study period, Kellner and Hubbell were able to identify when new trees joined the adult population for the first time. They used advanced statistical methods to make sure that they were in fact identifying new adults and not just trees that had skipped a year of flowering or had flowered early or late.

The researchers found that negative feedback affected the abundance of new adult trees and that it can influence the population of new adult trees in an area of almost 100 football fields. This contrasts with prior studies of juvenile trees, which found the effects of host-specific enemies are usually restricted to small areas, Kellner said.

To confirm the locations of trees from the satellite data, they went to the island and independently found 123 adult trees of the same species. Of these, 89 percent had been detected in the high-resolution images, suggesting that their data are a nearly complete census of the species.

Kellner said the implications could be broad.

"I can't think of any idea in ecology that is more important than population dynamics," he said. "It's important for everything from fishing licenses to forecasting disease outbreaks."

The research was published on Monday, Oct. 15, in the Proceedings of the National Academy of Sciences.

###

"This study is the first demonstration on such a large scale that escaping from the area of one's parent greatly increases the chance that a seed will survive to become a parent tree itself," said Doug Levey, a program officer at the National Science Foundation, which supported this long-term research (most recent grant: 1358915).

Media Contact

Mollie Rappe
[email protected]
401-863-1862
@brownuniversity

http://news.brown.edu/

Original Source

https://news.brown.edu/articles/2018/10/trees http://dx.doi.org/10.1073/pnas.1800353115

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Haplotype Analysis Links Regulatory Variants to Citrus Traits

October 31, 2025
Meerkats Gain Health Benefits Through Group Membership

Meerkats Gain Health Benefits Through Group Membership

October 30, 2025

Prenatal COVID-19 Infection Associated with Elevated Risk of Neurodevelopmental Disorders in Offspring

October 30, 2025

Decoding the Painted Lady Butterfly’s Mitochondrial Genome

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1293 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Addressing Urban Healthcare Overcrowding: Stakeholder Insights

Tillage and Stover Impact Root Microbiomes

Novel Iron Foam Bimetallic Enhances Supercapacitor Anodes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.