• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New structure identified in membrane of disease-causing bacteria

Bioengineer by Bioengineer
May 1, 2016
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

AMHERST, Mass. – Mycobacteria cause a number of dangerous, difficult-to-treat diseases including leprosy and tuberculosis, and progress has been slow in eradicating them. But new strategies for combating these bacteria may eventually emerge from better understanding their basic structure and mechanisms, say molecular microbiologist Yasu Morita and his doctoral student Jennifer Hayashi at the University of Massachusetts Amherst.

In the current issue of Proceedings of the National Academy of Sciences, they report an advance in the fundamental knowledge about a model species of these pathogens, Mycobacterium smegmatis. First author Hayashi and her advisor Morita demonstrate the existence of a distinct domain, or area, on the bacteria's plasma membrane that is crucial for the cell's ability to grow.

Morita says, "This wasn't known and I think many people will be surprised to see that there is such a formal membrane structure there that we didn't expect." The two write that findings provide "an important insight into the potential regulatory mechanisms of lipid metabolism in mycobacteria, where disrupting control points might offer a way to interrupt their growth."

Morita adds, "We hope that discovering this dedicated domain will one day lead to methods of inhibiting bacterial growth, but the real problem of mycobacterial diseases is that these particular bacteria can lie dormant for long periods without active growth. Knowing more about this newly discovered membrane domain could someday let us understand how they control their own growth and how they go dormant to hide in the body."

For this work, Hayashi built on Morita's earlier findings that suggested M. smegmatis's membrane has a specialized domain. Morita says, "I went as far as possible with the techniques available at the time. I showed that this was definitely worth pursuing. I reported a very specific biosynthesis going on in an organized membrane. My data suggested that it's not just a membrane but it's a manufacturing factory of membrane lipids."

Now that techniques such as large-scale comparative proteomics, lipodomics and fluorescence microscopy are available, Hayashi turned to these powerful tools to ask precisely what proteins and lipids, or fats, are present at the membrane domain, and what they do.

She identified more than 300 proteins in the domain and more than 600 in non-domain membrane, a total of nearly 1,000 membrane-associated proteins from a single experiment. "It's a pretty robust approach to figure out what's happening in the domain and non-domain areas, to confirm that the domain is distinct and observe that the two areas have different metabolic activities going on," Hayashi says.

In the lipdomic experiment made possible by collaboration with Branch Moody at Harvard's Brigham and Womens' Hospital, the UMass Amherst microbiologists found more than 600 lipids in the domain and nearly 800 in non-domain regions, providing "another piece of evidence that they are different and have different functions," Hayashi says.

Finally, she fused proteins identified in the proteomics experiment to fluorescent proteins and tracked them to the cell's local domain using fluorescent microscopy. "We were able to note that domain- and non-domain-associated proteins have distinct fluorescent patterns that are maintained while the cell grows. They stay separate, which confirms that this is a spatially distinct domain of the plasma membrane when cells are growing," Morita notes.

The two microbiologists say their discovery is just the latest in the recent series of discoveries showing that the old image of lowly bacteria being simple bags of enzymes is not true.

###

This work was supported by the Mizutani Foundation and the Potts Memorial Foundation, which supports TB research in particular, plus a UMass Amherst Graduate School dissertation grant.

Media Contact

Janet Lathrop
[email protected]
413-545-0444
@umassscience

http://www.umass.edu

The post New structure identified in membrane of disease-causing bacteria appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

New Insights into Endothelial Cell Death in Sepsis

October 7, 2025

LVSG Effects on LES and GERD: Meta-Analysis

October 7, 2025

PRDM6: A Key Protector Against PCOS

October 6, 2025

BRPF1: Epigenetic Cancer Regulator and Therapy Target

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    74 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Beneficial Gut Bacteria Enhances Placental Health for Improved Pregnancy Outcomes

New Insights into Endothelial Cell Death in Sepsis

LVSG Effects on LES and GERD: Meta-Analysis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.