• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New strategy to fight mosquitoes in a more efficient and sustainable way

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © E. van Herk

Mosquitoes continue to build resistance to existing pesticides. Research has now shown that the chemical substances emitted by one of the mosquito's natural enemies – the backswimmer – makes the biological pesticide Bti more deadly. These so-called predator cues also impair the mosquito's immune system. Scientists at KU Leuven (University of Leuven), Belgium, argue that a cocktail of biological pesticides and synthetic predator cues very well be the future of mosquito control.

Mosquitoes transmit quite a few deadly diseases, including West Nile Virus. Around the world, therefore, the fight against these insects is high on the agenda. Existing strategies for mosquito control often involve the use of pesticides that harm the environment. These pesticides are increasingly less effective as well, as insects can become resistant to existing products relatively quickly.

Biopesticides are a possible alternative. The most commonly used biological pesticide is the Bacillus thuringiensis israelensis (Bti) bacteria. Unfortunately, mosquitoes are already developing a resistance to this pesticide as well. This means we have to keep increasing the dose of Bti to kill mosquitoes, so that this biological substance, too, is beginning to harm the environment.

Under the supervision of Professor Robby Stoks, KU Leuven doctoral student Lin Op de Beeck set out to find a new strategy in the fight against mosquitoes. "We already knew that chemical substances emitted by the backswimmer – a natural enemy of mosquito larvae in the water – trigger a stress response in mosquitoes. This stress response, in turn, suppresses the mosquito's immune system," says Op de Beeck. "Scientists have recently found a way to produce a synthetic version of these chemical substances known as predator cues. We discovered that this synthetic version triggers a stress response in the mosquitoes and impairs their immune system, just like the natural predator cues."

This gave the researchers the idea to combine these synthetic predator cues with the biological pesticide Bti. "We developed a cocktail of predator cues and a low, non-lethal dose of Bti," Lin Op de Beeck continues. "The predator cues trigger extra stress, so that the Bti had a strong impact despite its lower dose. As a result, the mortality rates among mosquitoes were high."

As the predator cues of the backswimmer also have an impact on their targets' immune system, the cocktail weakens the mosquitoes and larvae that it fails to kill. "The surviving mosquitoes and mosquito larvae will probably have a shorter lifespan, so that the parasites they transmit don't have the time to complete their incubation period," says Op de Beeck. "As a result, the mosquitoes will transmit less diseases."

An additional advantage of this combined strategy is that synthetic predator cues of the backswimmer are not so difficult to produce, making the production of the Bti cocktail relatively easy and cheap.

"This new cocktail holds potential for a more efficient and more sustainable mosquito control. We need less Bti, so the impact on the environment is reduced and mosquitoes will be slower to build resistance," the researcher concludes.

This research was conducted in a lab environment. In a next stage, the cocktail will be tested in a more natural setting.

###

Media Contact

Lin Op de Beeck
[email protected]
32-163-73853
@LeuvenU

http://www.kuleuven.be/english/news?

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Ellagic Acid Shields Tooth Adhesives Post-Bleaching

November 9, 2025
First Hybrid Eriocheir Discovery in Mediterranean Sea

First Hybrid Eriocheir Discovery in Mediterranean Sea

November 9, 2025

Assessing Social Anxiety in Autism: A Multi-Method Approach

November 9, 2025

Impact of Patient Variability on Vascular Tissue Engineering

November 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ellagic Acid Shields Tooth Adhesives Post-Bleaching

First Hybrid Eriocheir Discovery in Mediterranean Sea

Assessing Social Anxiety in Autism: A Multi-Method Approach

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.