• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New strategy boosting carbon dioxide reduction to carbon monoxide

Bioengineer by Bioengineer
October 25, 2023
in Chemistry
Reading Time: 2 mins read
0
New strategy boosting carbon dioxide reduction to carbon monoxide
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Classical strong metal-support interaction (SMSI) describes that reducible oxide migrates to the surface metal nanoparticles (NPs) to obtain metal@oxide encapsulation structure during high-temperature H2 thermal treatment, resulting in high selectivity and stability.

New strategy boosting carbon dioxide reduction to carbon monoxide

Credit: DICP

Classical strong metal-support interaction (SMSI) describes that reducible oxide migrates to the surface metal nanoparticles (NPs) to obtain metal@oxide encapsulation structure during high-temperature H2 thermal treatment, resulting in high selectivity and stability.

However, the encapsulation structure inhibits the adsorption and dissociation of reactant molecular (e.g., H2) over metal, leading to low activity, especially for the hydrogenation reaction.

Recently, a research group led by Prof. LIU Yuefeng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) has proposed a new migration strategy, in which the TiO2 selectively migrates to second oxide support rather than the surface of metal NPs in Ru/(TiOx)MnO catalysts, boosting the CO2 reduction to CO via reverse water-gas shift reaction. 

This study was published in Nature Catalysis on Oct. 9. 

The researchers achieved controlled migration by utilizing the strong interaction between TiO2 and MnO in Ru/(TiOx)MnO catalysts during H2 thermal treatment, and TiO2 spontaneously re-dispersed on the MnO surface, avoiding the formation of TiOx shell on Ru NPs for the ternary catalyst (Ru/TiOx/MnO).

Meanwhile, high-density TiOx/MnO interfaces generated during the process, acting as a highly efficient H transportation channel with low barrier, and resulting in enhanced H-spillover for the migration of activated H species from metal Ru to support for consequent reaction. 

The Ru/TiOx/MnO catalyst showed 3.3-fold catalytic activity for CO2 reduction to CO compared with Ru/MnO catalyst. In addition, the Ti/Mn support preparation was not sensitive to the crystalline structure and grain size of TiO2 NPs. Even the mechanical mixing of Ru/TiO2 and Ru/MnOx enhanced the activity.

Moreover, they verified that the synergistic effect of TiO2 and MnO didn’t alter the catalytic intrinsic performance, and efficient H transport provided a large number of active sites (hydroxyl groups) for the reaction process. 

“Our study provides references for the design of novel selective hydrogenation catalysts via the in-situ creation of oxide-oxide interfaces acting as hydrogen species transport channels,” said Prof. LIU.



Journal

Nature Catalysis

DOI

10.1038/s41929-023-01040-0

Method of Research

Commentary/editorial

Subject of Research

Not applicable

Article Title

Generation of oxide surface patches promoting H-spillover in Ru/(TiOx)MnO catalysts enables CO2 reduction to CO

Article Publication Date

9-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025
blank

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Next-Gen Oncology: Precision Genomics Meets Immuno-Engineering

Prostate-Specific Antigen Testing: Past, Present, Future

Bisabolol: Natural Anticancer Agent with Therapeutic Promise

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.